

SINGLE-ENDED OUTPUT SILICON OSCILLATOR

Features

- Quartz-free, MEMS-free, and PLL-free all-silicon oscillator■ Footprint compatible with industry-
- Any output frequencies from 0.9 to 200 MHz
- Short lead times
- Excellent temperature stability (±20 ppm)
- Highly reliable startup and operation
- High immunity to shock and vibration
- Low jitter: <1.5 ps rms
- 0 to 85 °C operation includes 10-year aging in hot environments
- Footprint compatible with industrystandard 3.2 x 5.0 mm XOs
- CMOS and SSTL versions available
- Driver stopped, tri-state, or powerdown operation
- RoHS compliant
- 1.8, 2.5, or 3.3 V options
- Low power
- More than 10x better fit rate than competing crystal solutions

Specifications

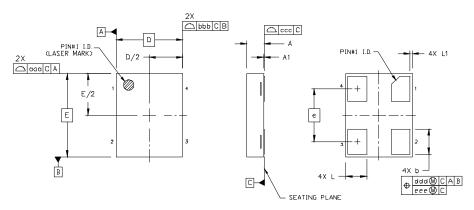
Parameters	Condition	Min	Тур	Max	Units
Frequency Range		0.9	_	200	MHz
	Temperature stability, 0 to +70 °C	_	±10	_	ppm
Frequency Stability	Temperature stability, 0 to +85 °C	_	±20	_	ppm
	Total stability, 0 to +70 °C operation ¹		_	±150	ppm
	Total stability, 0 to +85 °C operation ²	_	_	±250	ppm
Operating Temperature	Commercial	0	_	70	°C
Operating remperature	Extended commercial	0	_	85	°C
Storage Temperature		- 55	_	+125	°C
	1.8 V option	1.71	_	1.98	V
Supply Voltage	2.5 V option	2.25	_	2.75	V
	3.3 V option	2.97	_	3.63	V

Notes:

- 1. Inclusive of 25 °C initial frequency accuracy, operating temperature range, supply voltage change, output load change, first-year aging at 25 °C, shock, vibration, and one solder reflow.
- 2. Inclusive of 25 °C initial frequency accuracy, operating temperature range, supply voltage change, output load change, ten-year aging at 85 °C, shock, vibration, and one solder reflow.
- **3.** See "AN409: Output Termination Options for the Si500S and Si500D Silicon Oscillators" for further details regarding output clock termination recommendations.
- **4.** $V_{TT} = .5 \times V_{DD}$.
- **5.** $V_{TT} = .45 \times V_{DD}$.

Si500S

Parameters	Condition	Min	Тур	Max	Units	
	1.8 V option, 40 pF, 40 MHz, CMOS	_	13.9	16	mA	
	1.8 V option, 10 pF, 200 MHz, CMOS	_	16.7	19	mA	
	2.5 V option, 40 pF, 40 MHz, CMOS	_	15.8	18	mA	
	2.5 V option, 10 pF, 200 MHz, CMOS	_	19.3	22	mA	
	3.3 V option, 40 pF, 40 MHz, CMOS	_	17.7	20	mA	
Supply Current	3.3 V option, 10 pF, 200 MHz, CMOS	_	21.5	24	mA	
Supply Current	SSTL-3.3, 200 MHz	_	18.1	20.2	mA	
	SSTL-2.5, 200 MHz	_	18.0	19.7	mA	
	SSTL-1.8, 200 MHz	_	16.8	18.7	mA	
	Output Stopped, CMOS	_	11.8	13.1	mA	
	Tri-State	_	9.7	10.7	mA	
	Powerdown	_	1.0	1.9	mA	
Output Symmetry	0.5 x V _{DD}	46 – 13 ns/T _{CLK}	_	54 + 13 ns/T _{CLK}	%	
Rise and Fall Times ³	CMOS, C _L = 15 pF measured from 20 to 80% of V _{DD}	_	1.4	2.0	ns	
	SSTL	_	_	0.6	ns	
CNACC Output Valtage	V _{OH} , sourcing 9 mA	V _{DD} – 0.5	_	_	V	
CMOS Output Voltage	V _{OL} , sinking 9 mA	_		0.5	V	
SSTL-1.8 Output Voltage ⁴	V _{OH}	V _{TT} + 0.375	_	_	V	
331E-1.0 Output Voltage	V_{OL}	V _T		V _{TT} – 0.375	5 °	
SSTL-2.5 Output Voltage ⁴	V _{OH}	V _{TT} + 0.48	_	_	V	
OOTE 2.0 Output Voltage	V_{OL}	_	_	V _{TT} – 0.48	٧	
SSTL-3.3 Output Voltage ⁵	V _{OH}	V _{TT} + 0.48		_	V	
OOTE 3.5 Output Voltage	V_{OL}	_	_	V _{TT} – 0.48	V	
Powerup Time	From time V _{DD} crosses min spec supply	_	_	2	ms	
OE Deassertion to Clk Stop		_	_	250 + 3 x T _{CLK}	ns	
Return from Output Driver Stopped Mode		_	_	250 + 3 x T _{CLK}	ns	
Return from Tri-State Time		_	_	12 + 3 x T _{CLK}	μs	
Return from Powerdown Time		_		2	ms	
Period Jitter (1-sigma)	SSTL ³	_	1	2	ps RMS	
Integrated Phase Jitter	1 MHz – 0.4 x F_{OUT} , SSTL or CMOS and $C_L \le 7$ pF, $F_{OUT} > 2.5$ MHz	_	0.7	1.5	ps RMS	


Notes:

- 1. Inclusive of 25 °C initial frequency accuracy, operating temperature range, supply voltage change, output load change, first-year aging at 25 °C, shock, vibration, and one solder reflow.
- 2. Inclusive of 25 °C initial frequency accuracy, operating temperature range, supply voltage change, output load change, ten-year aging at 85 °C, shock, vibration, and one solder reflow.
- 3. See "AN409: Output Termination Options for the Si500S and Si500D Silicon Oscillators" for further details regarding output clock termination recommendations.
- **4.** $V_{TT} = .5 \times V_{DD}$. **5.** $V_{TT} = .45 \times V_{DD}$.

2 Rev. 1.1

Package Specifications

Table 1. Package Diagram Dimensions (mm)

Dimension	Min	Max		
Α	0.80	0.90		
A1	0.00 0.03 0.09			
b	1.15 1.20 1.25			
D	3.20 BSC			
е	2.54 BSC			
E	4.00 BSC			
L	0.95 1.00 1.05			

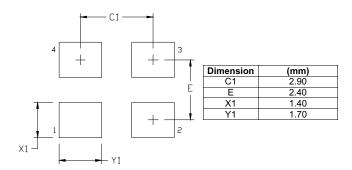

Dimension	Min	Nom	Max
L1	0.00	0.05	0.10
aaa			0.10
bbb			0.10
CCC			0.08
ddd			0.10
eee			0.05

Table 2. Pad Connections

1	OE		
2	GND		
3	Output		
4	VDD		

Table 3. Tri-State/Powerdown/Driver Stopped Function on OE (3rd Option Code)

	Α	В	С	D	E	F
Open	Active	Active	Active	Active	Active	Active
1 Level	Active	Tri- State	Active	Power- down	Active	Driver Stopped
0 Level	Tri- State	Active	Power- down	Active	Driver Stopped	Active

0 = Si500

CCCCC = mark code

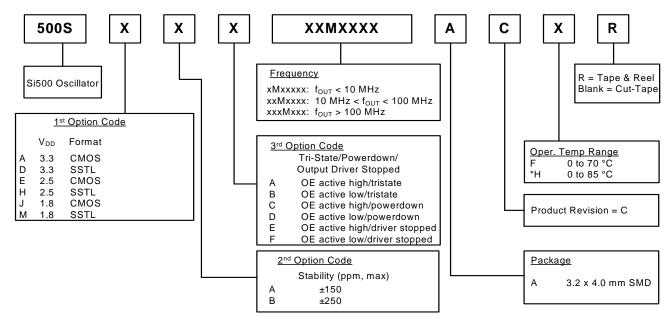
TTTTT = assembly manufacturing code

YY = year

WW = work week

Figure 1. Recommended Land Pattern

Figure 2. Top Mark


Rev. 1.1 3

Environmental Compliance

Parameter	Conditions/Test Method		
Mechanical Shock	MIL-STD-883, Method 2002.4		
Mechanical Vibration	MIL-STD-883, Method 2007.3 A		
Resistance to Soldering Heat	MIL-STD-202, 260 C° for 8 seconds		
Solderability	MIL-STD-883, Method 2003.8		
Damp Heat	IEC 68-2-3		
Moisture Sensitivity Level	J-STD-020, MSL 3		

Ordering Information

The Si500S supports a variety of options including frequency, output format, supply voltage, and tristate/powerdown/output driver stopped mode. Specific device configurations are programmed into the Si500S at time of shipment. Configurations are specified using the figure below. Silicon Labs provides a web-based part number utility that can be used to simplify part number configuration. www.silabs.com/SiliconXOPartnumber to access this tool. The Si500S silicon oscillator is supplied in a ROHScompliant, 4-pad, 3.2 x 4.0 mm package. Tape and reel packaging is available as an ordering option.

*Note: Only +250 ppm is supported.

4 Rev. 1.1

DOCUMENT CHANGE LIST

Revision 0.3 to Revision 0.4

- Revision B to Revision C updated in Ordering Information
- 0 to 85 C° Operating Temperature Range option added
- Multiple CMOS output format codes removed

Revision 0.4 to Revision 1.0

- Clarified SSTL specifications.
- Revised CMOS supply current max values .

Revision 1.0 to Revision 1.1

- Updated Ordering information for ±250 ppm from 0 to +85 °C.
- Updated jitter from 1.5 ps to 1.5 ps rms.
- Updated operating temperature to include extended commercial at 0 to +85 °C.

Rev. 1.1 5

Si500S

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

6 Rev. 1.1

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com