

April 2012

# FAN7631 Advanced Pulse Frequency Modulation (PFM) Controller for Half-Bridge Resonant Converters

#### **Features**

- Variable Frequency Control with 50% Duty Cycle for Half-Bridge Resonant Converter Topologies
- High Efficiency with Zero-Voltage-Switching (ZVS)
- Up to 600kHz Operating Frequency
- Built-in High-Side Gate Driver
- High Gate-Driving Current: +500mA/-1000mA
- Programmable Dead Time with a Resistor
- Pulse Skipping and Burst Operation for Frequency Limit (Programmable) at Light-Load Condition
- Simple Remote On/Off Control with Latch or Auto-Restart (A/R) Using FI or LS Pin
- Protection Functions: Over-Voltage Protection (OVP), Overload Protection (OLP), Over-Current Protection (OCP), Abnormal Over-Current Protection (AOCP), Internal Thermal Shutdown (TSD), and High Precise Line Under-Voltage Lockout (LUVLO)
- Level-Change OCP Function During Startup

### **Applications**

- PDP and LCD TVs
- Desktop PCs and Servers
- Video Game Consoles
- Adapters
- Telecom Power Supplies

## Description

The FAN7631 is a pulse-frequency modulation controller for high-efficiency half-bridge resonant converters that includes a high-side gate drive circuit, an accurate current-controlled oscillator, and various protection functions. The FAN7631 features include variable dead time, operating frequency up to 600kHz, protections such as LUVLO, and a selectable latch or A/R protection using the LS pin for user convenience.

The Zero-Voltage-Switching (ZVS) technique reduces the switching losses and improves the efficiency significantly. ZVS also reduces the switching noise noticeably, which allows a small Electromagnetic Interference (EMI) filter.

Offering everything necessary to build a reliable and robust resonant converter, the FAN7631 simplifies designs and improves productivity and performance. The FAN7631 can be applied to resonant converter topologies such as series resonant, parallel resonant, and LLC resonant converters.

#### **Related Resources**

AN4151 — Half-Bridge LLC Resonant Converter Design Using FSFR-Series Fairchild Power Switch (FPS™)

## **Ordering Information**

| Part Number | Operating Junction<br>Temperature | Package                              | Packaging<br>Method |
|-------------|-----------------------------------|--------------------------------------|---------------------|
| FAN7631SJ   | 40°C - 120°C                      | 16 Load Small Outline Backage (SOB)  | Tube                |
| FAN7631SJX  | -40°C ~ 130°C                     | 16-Lead, Small-Outline Package (SOP) | Tape & Reel         |

## **Application Circuit Diagram**

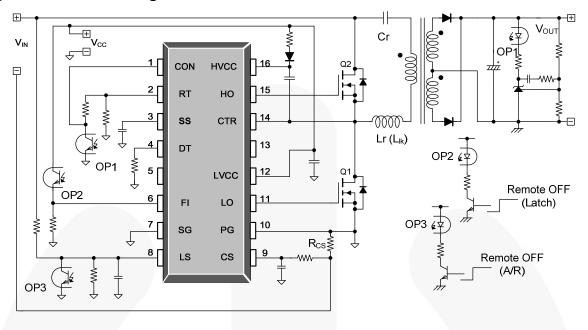
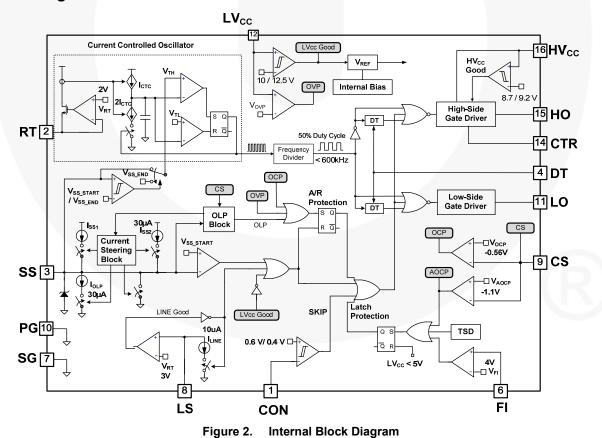




Figure 1. Typical Application Circuit (Resonant Half-Bridge Converter)

## **Block Diagram**



# Pin Configuration

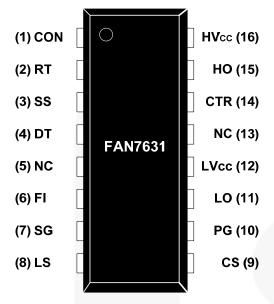



Figure 3. Package Pin Assignments (16SOP)

## **Pin Definitions**

| Pin#  | Name             | Description                                                                                                                                                                                                                                                                |  |  |  |
|-------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FIII# | INAIIIE          |                                                                                                                                                                                                                                                                            |  |  |  |
| 1     | CON              | This pin is used to enable / disable the gate drive outputs for pulse-skipping operation. When the roltage of this pin is above 0.6V, the gate drive outputs are enabled. When the voltage of this pin lrops below 0.4V, gate drive signals for both MOSFETs are disabled. |  |  |  |
| 2     | RT               | This pin programs the switching frequency. Typically, an opto-coupler is connected to this pin to control the switching frequency for the output voltage regulation.                                                                                                       |  |  |  |
| 3     | SS               | This pin is used to program the soft-start time and overload protection delay. It also programs the restart delay when the converter auto recovers from the protection states. Typically, a small capacitor is connected on this pin.                                      |  |  |  |
| 4     | DT               | This pin is to adjust the dead time using an external resistor.                                                                                                                                                                                                            |  |  |  |
| 5     | NC               | No connection                                                                                                                                                                                                                                                              |  |  |  |
| 6     | FI               | User protection function / fault input. This pin can be used as a latch protection, which is operated when a voltage applied to this pin is higher than $4V_{DC}$ .                                                                                                        |  |  |  |
| 7     | SG               | This pin is the ground of the control part.                                                                                                                                                                                                                                |  |  |  |
| 8     | LS               | This pin senses the line voltage for line under-voltage lockout (LUVLO).                                                                                                                                                                                                   |  |  |  |
| 9     | CS               | This pin senses the current flowing through the main MOSFET. Typically, negative voltage is applied on this pin.                                                                                                                                                           |  |  |  |
| 10    | PG               | This pin is the power ground. This pin typically connects to the source of the low-side MOSFET.                                                                                                                                                                            |  |  |  |
| 11    | LO               | This pin is used for the low-side gate-driving signal.                                                                                                                                                                                                                     |  |  |  |
| 12    | LV <sub>CC</sub> | This pin is for the supply voltage of the control IC and low-side gate-driving circuit.                                                                                                                                                                                    |  |  |  |
| 13    | NC               | No connection                                                                                                                                                                                                                                                              |  |  |  |
| 14    | CTR              | This pin is connected to the drain of the low-side MOSFET. Typically, a transformer is connected to this pin.                                                                                                                                                              |  |  |  |
| 15    | НО               | This pin is used for the high-side gate-driving signal.                                                                                                                                                                                                                    |  |  |  |
| 16    | HV <sub>CC</sub> | This pin is used for the supply voltage of the high-side gate-driving circuit.                                                                                                                                                                                             |  |  |  |

## **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions. Extended exposure to stresses above the recommended operating conditions may affect device reliability so that any test which is stressing the parts to these levels is not recommended. The absolute maximum ratings are stress ratings only.  $T_A=25^{\circ}C$  unless otherwise specified.

| Symbol                               | Parameter                                                                                    | Min.                  | Max.                                 | Unit |
|--------------------------------------|----------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|------|
| HV <sub>CC</sub> to V <sub>CTR</sub> | High-Side V <sub>CC</sub> Pin to Center Voltage                                              | -0.3                  | 25.0                                 | V    |
| HVcc                                 | High-Side Floating Supply Voltage                                                            | -0.3                  | 625.0                                | V    |
| V <sub>HO</sub>                      | High-Side Gate\-Driving Voltage                                                              | V <sub>CTR</sub> -0.3 | HV <sub>CC</sub> +0.3                | V    |
|                                      | High-Side Offset Voltage                                                                     | HV <sub>CC</sub> -25  | HV <sub>CC</sub> +0.3                | V    |
| $V_{CTR}$                            | Allowable Negative V <sub>CTR</sub> at 15V <sub>DC</sub> Applied HV <sub>CC</sub> to CTR Pin | -9.8                  | -7.0                                 | V    |
| LV <sub>CC</sub>                     | Low-Side Supply Voltage                                                                      | -0.3                  | 25.0                                 | V    |
| V <sub>LO</sub>                      | Low-Side Gate Driving Voltage                                                                | -0.3                  | LVcc                                 | V    |
| V <sub>CON</sub>                     | Control Pin Input Voltage                                                                    | -0.3                  | LV <sub>CC</sub>                     | V    |
| V <sub>CS</sub>                      | Current Sense (CS) Pin Input Voltage                                                         | -5.0                  | 1.0                                  | V    |
| V <sub>RT</sub>                      | RT Pin Input Voltage                                                                         | -0.3                  | 5.0                                  | V    |
| f <sub>sw</sub>                      | Recommended Switching Frequency                                                              | 10                    | 600                                  | kHz  |
| V <sub>LS</sub>                      | LS Pin Input Voltage                                                                         | -0.3                  | LV <sub>CC</sub>                     | V    |
| $V_{FI}$                             | FI Pin Input Voltage                                                                         | -0.3                  | LV <sub>CC</sub>                     | V    |
| V <sub>SS</sub>                      | SS Pin Input Voltage                                                                         | -0.3                  | Internally<br>Clamped <sup>(1)</sup> | V    |
| $V_{DT}$                             | DT Pin Input Voltage                                                                         | -0.3                  | Internally<br>Clamped <sup>(1)</sup> | V    |
| dV <sub>CTR</sub> /dt                | Allowable CTR Voltage Slew Rate                                                              |                       | 50                                   | V/ns |
| $P_D$                                | Total Power Dissipation                                                                      |                       | 1.24                                 | W    |
| т                                    | Maximum Junction Temperature <sup>(2)</sup>                                                  |                       | +150                                 | °C   |
| TJ                                   | Recommended Operating Junction Temperature <sup>(2)</sup>                                    | -40                   | +130                                 |      |
| T <sub>STG</sub>                     | Storage Temperature Range                                                                    | -55                   | +150                                 | °C   |

#### Notes

- 1.  $V_{SS}$  and  $V_{DT}$  are internally clamped at 5.0V, which has a tolerance between 4.75V and 5.25V.
- 2. The maximum value of the recommended operating junction temperature is limited by thermal shutdown.

## Thermal Impedance

| Symbol        | Parameter                             | Value | Unit |
|---------------|---------------------------------------|-------|------|
| $\theta_{JA}$ | Junction-to-Ambient Thermal Impedance | 102   | °C/W |

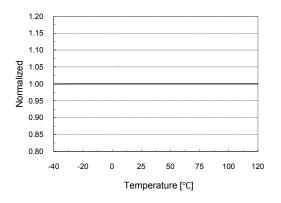
## **Electrical Characteristics**

 $T_A {=} 25^{\circ} C$  and LV  $_{CC} {=} 17 V$  unless otherwise specified.

| Symbol                 | Parameter                                                                                     | Condition                                                                                             | Min. | Тур. | Max. | Unit |  |
|------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------|------|------|------|--|
| Supply Sect            | ion                                                                                           |                                                                                                       |      |      |      |      |  |
| I <sub>LK</sub>        | Offset Supply Leakage Current                                                                 | HV <sub>CC</sub> =V <sub>CTR</sub>                                                                    |      |      | 50   | μA   |  |
| $I_QHV_{CC}$           | Quiescent HV <sub>cc</sub> Supply Current HV <sub>cc,START</sub> - 0.1V, V <sub>CTR</sub> =0V |                                                                                                       |      | 50   | 120  | μΑ   |  |
| $I_{Q}LV_{CC}$         | Quiescent LV <sub>cc</sub> Supply Current                                                     | LV <sub>CC</sub> , <sub>START</sub> - 0.1V, V <sub>CTR</sub> =0V                                      |      | 100  | 200  | μA   |  |
|                        |                                                                                               | $f_{OSC}$ =100kHz, $C_{Load}$ =1nF, $V_{CON}$ > 0.6V, $V_{CTR}$ =0V                                   |      | 3.0  | 4.5  | mA   |  |
| $I_{O}HV_{CC}$         | Operating HV <sub>CC</sub> Supply Current (RMS Value) <sup>(3)</sup>                          | $\begin{array}{l} f_{OSC} = 300 kHz, \ C_{Load} = 1nF, \\ V_{CON} > 0.6V, \ V_{CTR} = 0V \end{array}$ |      | 8    | 10   | mA   |  |
|                        |                                                                                               | f <sub>OSC</sub> =300kHz, V <sub>CON</sub> < 0.4V,<br>V <sub>CTR</sub> =0V (No Switching)             |      | 100  | 200  | μA   |  |
|                        |                                                                                               | $f_{OSC}$ =100kHz, $C_{Load}$ =1nF<br>$V_{CON}$ > 0.6V, $V_{CTR}$ =0V                                 |      | 5    | 7    | mA   |  |
| $I_{O}LV_{CC}$         | Operating LV <sub>CC</sub> Supply Current (RMS Value) <sup>(3)</sup>                          | $f_{OSC}$ =300kHz, $C_{Load}$ =1nF, $V_{CON}$ > 0.6V, $V_{CTR}$ =0V                                   |      | 10   | 14   | mA   |  |
|                        |                                                                                               | f <sub>OSC</sub> =300kHz, V <sub>CON</sub> < 0.4V,<br>V <sub>CTR</sub> =0V (No Switching)             |      | 2.6  | 3.5  | mA   |  |
| UVLO Section           | on                                                                                            |                                                                                                       |      |      |      |      |  |
| LV <sub>CC,START</sub> | LV <sub>CC</sub> UVLO Turn-On Threshold                                                       |                                                                                                       | 11.2 | 12.5 | 13.8 | V    |  |
| LV <sub>CC,STOP</sub>  | LV <sub>CC</sub> UVLO Turn-Off Threshold                                                      |                                                                                                       | 8.9  | 10.0 | 11.1 | V    |  |
| LV <sub>CC,HYS</sub>   | LV <sub>CC</sub> UVLO Hysteresis                                                              |                                                                                                       |      | 2.5  |      | V    |  |
| HV <sub>CC,START</sub> | HV <sub>CC</sub> UVLO Turn-On Threshold                                                       |                                                                                                       | 8.2  | 9.2  | 10.2 | V    |  |
| HV <sub>CC,STOP</sub>  | HVcc UVLO Turn-Off Threshold                                                                  |                                                                                                       | 7.8  | 8.7  | 9.6  | V    |  |
| HV <sub>CC,HYS</sub>   | HV <sub>CC</sub> UVLO Hysteresis                                                              |                                                                                                       |      | 0.5  |      | V    |  |
| Oscillator &           | Feedback Section                                                                              |                                                                                                       |      |      | •    |      |  |
| $V_{BH}$               | Pulse Skip Disable Threshold Voltage                                                          |                                                                                                       | 0.54 | 0.60 | 0.66 | V    |  |
| $V_{BL}$               | Pulse Skip Enable Threshold Voltage                                                           |                                                                                                       | 0.36 | 0.40 | 0.44 | V    |  |
| $V_{RT}$               | Regulated RT Voltage                                                                          |                                                                                                       | 1.5  | 2.0  | 2.5  | V    |  |
|                        | 0.4.40 31.43 5                                                                                | $R_T$ =11.6k $\Omega$ , $C_{SS}$ =1nF                                                                 | 48   | 50   | 52   |      |  |
| f <sub>OSC</sub>       | Output Oscillation Frequency                                                                  | $R_T=2.7k\Omega$ , $C_{SS}=1nF$                                                                       | 188  | 200  | 212  | kHz  |  |
| DO                     | 0.1, 10.1, 0.1,                                                                               | $R_T$ =11.6k $\Omega$ , $C_{Load}$ =100pF                                                             | 49   | 50   | 51   | 1    |  |
| DC                     | Output Duty Cycle                                                                             | $R_T$ =2.7k $\Omega$ , $C_{Load}$ =100pF                                                              | 48   | 50   | 52   | %    |  |
| Soft-Start ar          | nd Restart Section                                                                            |                                                                                                       | •    |      |      | •    |  |
| I <sub>SS1</sub>       | Soft-Start Current 1                                                                          | V <sub>CSS</sub> =0V, LV <sub>CC</sub> =17V                                                           | 3    |      |      | mA   |  |
| I <sub>SS2</sub>       | Soft-Start Current 2                                                                          | V <sub>CSS</sub> =1.6V, LV <sub>CC</sub> =17V                                                         | 25   | 30   | 35   | μA   |  |
| V <sub>SS_START</sub>  | Soft-Start Start Voltage                                                                      | C <sub>SS</sub> =1nF, V <sub>CON</sub> =3V                                                            | 1.5  | 1.6  | 1.7  | V    |  |
| V <sub>SS_END</sub>    | Soft-Start End Voltage                                                                        | C <sub>SS</sub> =1nF, V <sub>CON</sub> =3V                                                            | 4.0  | 4.2  | 4.4  | V    |  |
| V <sub>SSC</sub>       | Clamped Soft-Start Voltage                                                                    | C <sub>SS</sub> =1nF, V <sub>CON</sub> =3V                                                            | 4.75 | 5.00 | 5.25 | V    |  |
|                        |                                                                                               | $R_T$ =11.6k $\Omega$ , $V_{CSS}$ =1.6V                                                               |      | 300  |      | †    |  |
| fosc_ss                | Initial Output Oscillation Frequency During Soft-Start                                        | R <sub>T</sub> =5.8kΩ                                                                                 |      | 530  |      | kHz  |  |
| _                      | During Soit-Start                                                                             | $R_T$ =2.7k $\Omega$                                                                                  | 600  |      |      | 1    |  |
| V <sub>RT-CON</sub>    | RT-CON Voltage for Startup                                                                    |                                                                                                       |      | 60   | 120  | mV   |  |

Continued on the following page...

## **Electrical Characteristics** (Continued)


 $T_A$ =25°C and LV<sub>CC</sub>=17V unless otherwise specified.

| Symbol              | Parameter Condition                                                                 |                                                                           | Min.  | Тур.  | Max.  | Unit |  |
|---------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|-------|-------|------|--|
| Output Sect         | tion                                                                                | 1                                                                         | 1     | 1     | 1     | ı    |  |
| I <sub>source</sub> | Peak Sourcing Current                                                               | LV <sub>CC</sub> =HV <sub>CC</sub> =17V,<br>T <sub>J</sub> =-40°C ~ 130°C | 500   |       |       | mA   |  |
| I <sub>sink</sub>   | Peak Sinking Current                                                                | HV <sub>CC</sub> =17V,<br>T <sub>J</sub> =-40°C ~ 130°C                   | 1000  |       |       | mA   |  |
| t <sub>r</sub>      | Rising Time                                                                         | LIV -47V C -47F                                                           |       | 40    |       | ns   |  |
| t <sub>f</sub>      | Falling Time                                                                        | HV <sub>CC</sub> =17V, C <sub>Load</sub> =1nF                             |       | 20    |       | ns   |  |
| V <sub>HOH</sub>    | High Level of High-Side Gate Signal (V <sub>HVCC</sub> -V <sub>HO</sub> )           |                                                                           |       |       | 1.0   | V    |  |
| $V_{HOL}$           | Low Level of High-Side Gate Signal                                                  | ]<br>  _20mA                                                              |       |       | 0.6   | V    |  |
| V <sub>LOH</sub>    | High Level of Low-Side Gate Signal (V <sub>LVCC</sub> -V <sub>LO</sub> )            | I <sub>O</sub> =20mA                                                      |       |       | 1.0   | V    |  |
| $V_{LOL}$           | Low Level of Low-Side Gate Signal                                                   |                                                                           |       |       | 0.6   | V    |  |
| Protection S        | Section                                                                             |                                                                           | 1     |       |       |      |  |
| I <sub>OLP</sub>    | OLP Sink Current                                                                    |                                                                           | 25    | 30    | 35    | μΑ   |  |
| $V_{OLP}$           | OLP Threshold Voltage                                                               |                                                                           | -0.42 | -0.37 | -0.32 | V    |  |
| t <sub>BOL</sub>    | OLP Blanking Time <sup>(3)</sup>                                                    |                                                                           | 150   | 200   | 250   | ns   |  |
| V <sub>OCP</sub>    | OCP Threshold Voltage                                                               |                                                                           | -0.62 | -0.56 | -0.50 | V    |  |
| t <sub>BO</sub>     | OCP Blanking Time <sup>(3)</sup>                                                    |                                                                           | 150   | 200   | 250   | ns   |  |
| V <sub>AOCP</sub>   | AOCP Threshold Voltage                                                              |                                                                           | -1.21 | -1.10 | -0.99 | V    |  |
| t <sub>BAO</sub>    | AOCP Blanking Time <sup>(3)</sup>                                                   |                                                                           |       | 50    |       | ns   |  |
| t <sub>DA</sub>     | Delay Time (Low Side) Detecting from V <sub>AOCP</sub> to Switch Off <sup>(3)</sup> |                                                                           |       | 250   | 400   | ns   |  |
| V <sub>OVP</sub>    | LV <sub>CC</sub> Over-Voltage Protection                                            |                                                                           | 21    | 23    | 25    | V    |  |
| V <sub>LINE</sub>   | Line UVLO Threshold Voltage                                                         | V <sub>LS</sub> Sweep, -40°C ~ 130°C                                      | 2.88  | 3.00  | 3.12  | V    |  |
| I <sub>LINE</sub>   | Line UVLO Hysteresis Current                                                        | V <sub>LS</sub> =2V                                                       | 9     | 10    | 11    | μΑ   |  |
| T <sub>SD</sub>     | Thermal Shutdown Temperature <sup>(3)</sup>                                         |                                                                           | 130   | 140   | 150   | °C   |  |
| V <sub>FI</sub>     | Fault Input Threshold Voltage for Latch Operation                                   |                                                                           | 3.8   | 4.0   | 4.2   | V    |  |
| $I_{LR}$            | Latch-Protection Sustain LV <sub>CC</sub> Supply Current                            | LV <sub>CC</sub> =7.5V                                                    |       | 100   | 150   | μΑ   |  |
| $V_{LR}$            | Latch-Protection Reset LV <sub>CC</sub> Supply Voltage                              |                                                                           | 5     |       |       | V    |  |
| Dead-Time           | Control Section                                                                     |                                                                           |       |       |       | 10   |  |
|                     |                                                                                     | $R_{DT}$ =2.7k $\Omega$ , $C_{Load}$ =1nF                                 | 100   | 150   | 200   |      |  |
|                     | Dood Time                                                                           | $R_{DT}$ =18k $\Omega$ , $C_{Load}$ =1nF                                  | 250   | 350   | 450   | 0    |  |
| $D_T$               | Dead Time                                                                           | Short, C <sub>Load</sub> =1nF                                             |       | 50    |       | ns   |  |
|                     |                                                                                     | Open, C <sub>Load</sub> =1nF                                              |       | 1000  |       | 1    |  |
|                     | Recommended Dead Time Range                                                         |                                                                           | 100   | İ     | 600   |      |  |

#### Note:

3. This parameter, although guaranteed, is not tested in production.

## **Typical Performance Characteristics**



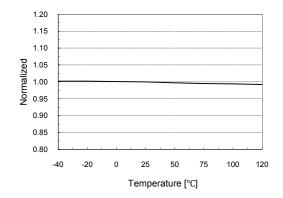
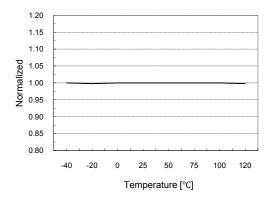




Figure 4. LV<sub>CC</sub> Start Voltage vs. Temperature





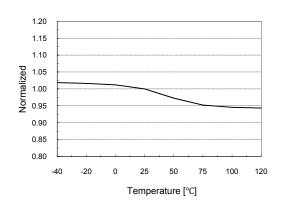
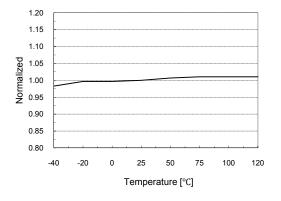




Figure 6. HV<sub>CC</sub> Start Voltage vs. Temperature

Figure 7. HV<sub>CC</sub> Stop Voltage vs. Temperature



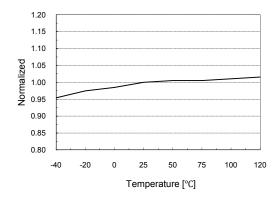
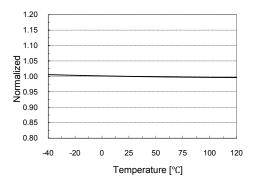




Figure 8. Pulse Skip Disable Voltage vs. Temperature Figure 9. Pulse Skip Enable Voltage vs. Temperature

## Typical Performance Characteristics (Continued)



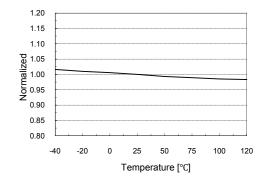
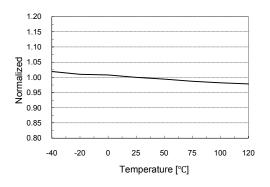




Figure 10. Regulated  $R_{\text{T}}$  Voltage vs. Temperature

Figure 11. Output Oscillation Frequency (R<sub>T</sub>=11.6k $\Omega$ ) vs. Temperature



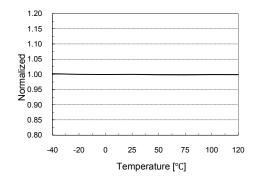
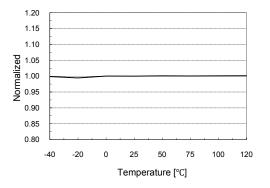




Figure 12. Output Oscillation Frequency ( $R_T$ =2.7 $k\Omega$ ) vs. Temperature

Figure 13. Output Duty Cycle ( $R_T$ =11.6k $\Omega$ ) vs. Temperature



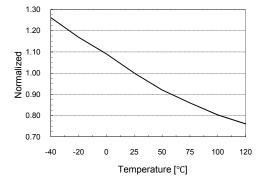
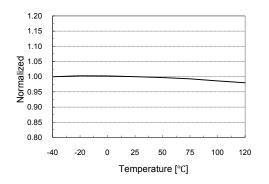




Figure 14. Output Duty Cycle ( $R_T$ =2.7 $k\Omega$ ) vs. Temperature

Figure 15. I<sub>SS1</sub> vs. Temperature

## **Typical Performance Characteristics** (Continued)



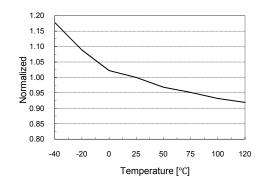
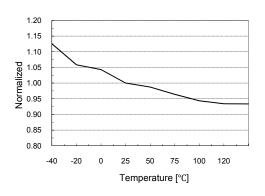




Figure 16. I<sub>SS2</sub> vs. Temperature

Figure 17.  $f_{OSC\_SS}(R_T=11.6k\Omega)$  vs. Temperature



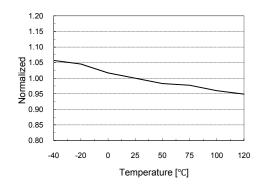
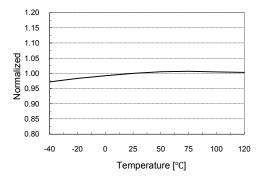




Figure 18.  $f_{OSC\_SS}(R_T=2.7k\Omega)$  vs. Temperature

Figure 19. V<sub>OLP</sub> vs. Temperature



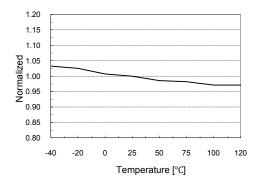



Figure 20. I<sub>OLP</sub> vs. Temperature

Figure 21. V<sub>OCP</sub> vs. Temperature

## **Typical Performance Characteristics** (Continued)

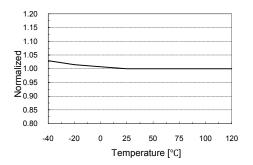



Figure 22. V<sub>AOCP</sub> vs. Temperature

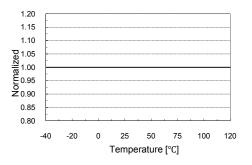



Figure 24.  $V_{\text{LINE}}$  vs. Temperature

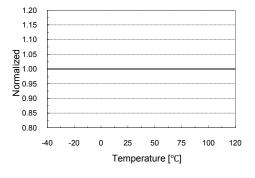



Figure 26. V<sub>FI</sub> vs. Temperature

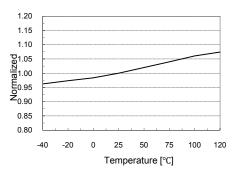



Figure 28. Dead Time (D<sub>T</sub>=350ns) vs. Temperature

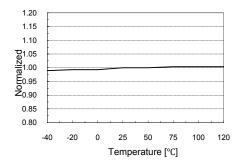



Figure 23. V<sub>OVP</sub> vs. Temperature

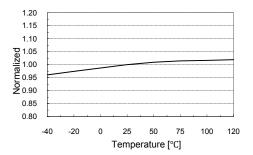



Figure 25. I<sub>LINE</sub> vs. Temperature

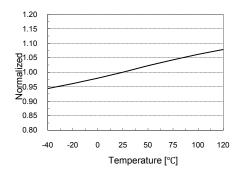



Figure 27. Dead Time (D<sub>T</sub>=150ns) vs. Temperature

## **Functional Description**

#### 1. Internal Oscillator

Figure 29 shows the simplified circuit of internal current-controlled oscillator and typical circuit configuration for the RT pin. Internally, the voltage on the RT pin is regulated at 2V by the V/I converter. The charging / discharging current for the oscillator capacitor,  $C_{\text{T}}$ , is obtained by mirroring the current flowing out of the RT pin (I\_CTC). By comparing the capacitor voltage with V\_TH and V\_TL and driving S/R flip-flop with the comparator outputs, the clock signal is obtained. Thus, the switching frequency increases as the RT pin current increases.

As can be seen in Figure 29, an opto-coupler transistor is typically connected to the RT pin through  $R_{\text{max}}$  to modulate the switching frequency. During an overload condition, the opto-coupler is fully turned off and  $I_{\text{CTC}}$  is solely determined by  $R_{\text{min}},$  which sets the minimum frequency. Meanwhile, the maximum switching frequency is obtained when the opto-coupler is fully turned on. Considering the typical saturation voltage of opto-transistor (0.2V), the maximum frequency can be obtained by  $R_{\text{max}}$  and  $R_{\text{min}}$  as:

$$f_{\min} = \frac{11.6k\Omega}{R_{\min}} \times 50kHz$$

$$f_{\max} = (\frac{11.6k\Omega}{R_{\min}} + \frac{10.4k\Omega}{R_{\max}}) \times 50kHz$$

$$V_{\text{TH}} = V_{\text{SS\_END}}$$

$$V_{\text{RFF}} = V_{\text{CTC}} + V_{\text{TH}} = V_{\text{SS\_END}}$$

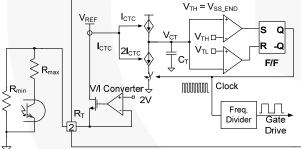



Figure 29. Current-Controlled Oscillator

## 2. Gate Driver and Dead Time Programming

The FAN7631 employs a gate drive circuit with high driving capability (source: 0.5A / sink: 1A) to cover a wide variety of applications. The two gate drive signals (LO and HO) are complimentary; each signal has 50% duty cycle, including the dead time, as shown in Figure 30.

The dead time can be programmed by the resistor,  $R_{DT}$ , as shown in Figure 31. Internally, the voltage on the DT pin is regulated at 1.4V by the V/I converter and  $I_{DT}$  programs the dead time using  $R_{DT}$ . To improve the noise immunity of the dead time circuit, a sample-and-hold circuit is internally employed. However, severe noises in a high-power application can affect the dead time circuit operation and it is therefore recommended to use a bypass capacitor of around 10nF in parallel with the  $R_{DT}$ . As a protective measure against abnormal conditions,

such as DT pin short-to-ground and lift open, shunt-resistor and series resistor  $R_{\text{DT,Short}}$  and  $R_{\text{DT,Open}}$  are internally connected to the DT pin. Even when this pin is shorted to ground and lifted open, the dead time is limited to 50ns (short to ground) and 1000ns (lifted open). Since the internal resistors have relatively large tolerance, it is recommended to set the dead time between 150ns and 600ns to minimize the dead time variation by the internal resistor tolerance.

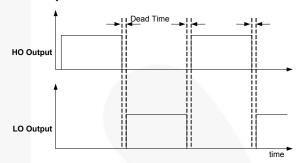



Figure 30. Gate Driving Signals



Figure 31. Dead Time vs. RDT

#### 3. Soft-Start

Since the voltage gain of the resonant converter is inversely proportional to the switching frequency, the soft-start is implemented by sweeping down the switching frequency from a high initial frequency until the output voltage is established. The current-steering circuit connected to SS pin adaptively changes the sinking and sourcing current of the SS pin to set soft-start time, OLP shutdown delay, and restart time. As illustrated in Figure 32, the sourcing current,  $I_{\rm SS1}$  (3mA), is enabled at the beginning of startup, which rapidly raises  $V_{\rm SS}$  up to  $V_{\rm SS\_START}$  (1.6V). Then the sourcing current is switched to  $I_{\rm SS2}$  (30µA) and gate drive signals are enabled. Due to the small value of  $I_{\rm SS2}$ , the SS pin voltage slowly rises, allowing slow decrease of the switching frequency.

To minimize the frequency variation while the output capacitance of the opto-transistor is charged up, soft-start is delayed until the CON pin voltage (opto-coupler transistor voltage) reaches the RT pin voltage. Thus, the

initial switching frequency is not affected by  $R_{\text{max}}$  and is solely determined as six times the minimum switching frequency set by  $R_{\text{min}}$  as in Equation (1). The maximum switching frequency is also internally limited at 600kHz.

When  $V_{SS}$  reaches  $V_{SS\_END}$  (4.2V), soft-start ends. Then, the high threshold of  $V_{CT}$  comparator,  $V_{TH}$ , is clamped at  $V_{SS\_END}$  while  $V_{SS}$  keeps increasing until it reaches  $V_{SSC}$  (5V). The soft-start time is given as:

$$t_{SS} = C_{SS} \frac{2.6}{3 \times 10^{-5}} \tag{2}$$

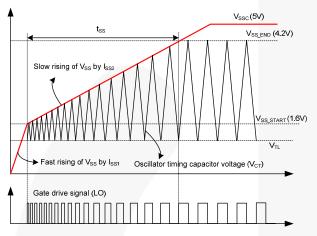



Figure 32. Soft-Start Waveforms

#### 4. Current Sensing

FAN7631 employs a negative voltage sensing method to sense the drain current of the MOSFET. This allows sensing the current without a leading edge spike caused by the low-side MOSFET's driving current. Therefore, the resistive-sensing method requires only a small RC filter. The capacitive-sensing method is also available.

#### 4.1. Resistive Sensing Method

The FAN7631 can sense the drain current as a negative voltage, as shown in Figure 33. An RC filter with a time constant of 1/30~1/10 of the operating period is typical.

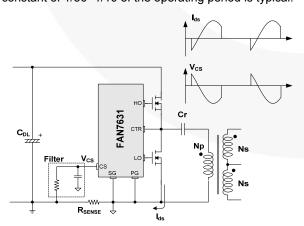



Figure 33. Resistive Sensing

#### 4.2. Capacitive Sensing Method

The MOSFET drain current can be sensed using an additional capacitor in parallel with the resonant capacitor, as shown in Figure 34. While the low-side switch is turned on, the current,  $I_{CB}$ , through  $C_B$  introduces  $V_{SENSE}$  across  $R_{SENSE}$ . The  $I_{CB}$  is a fraction of the transformer primary-side current,  $I_p$ , determined by the current divider with capacitors  $C_r$  and  $C_B$  as:

$$i_{CB} = \frac{C_B}{C_r + C_B} i_p \cong \frac{C_B}{C_r} i_p \tag{3}$$

Generally,  $1/100\sim1/1000$  is adequate for the ratio of  $C_B/C_r$ .  $R_D$  is used as a damper for reducing noise generated by the switching transition. To prevent the damping resistor from affecting the current divider ratio, the resistor should be much smaller than the impedance of  $C_B$  at the switching frequency, calculated as:

$$R_D \ll \frac{1}{2\pi f_S C_B} \tag{4}$$

Then, V<sub>SENSE</sub> can be obtained as:

$$V_{Sense} = \frac{C_B}{C_{\cdot \cdot}} R_{sense} i_p \tag{5}$$

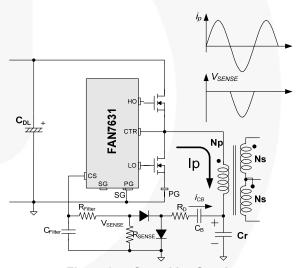



Figure 34. Capacitive Sensing

#### 5. Protection Circuit

The FAN7631 has several self-protective functions: Overload Protection (OLP), Over-Current Protection (OCP), level-change OCP, Abnormal Over-Current Protection (AOCP), Over-Voltage Protection (OVP), Thermal Shutdown (TSD), Fault Input (FI), and Line Under-Voltage Lockout (LUVLO or also called brownout). Level-change OCP, OLP, OCP, OVP, and LUVLO are Auto-Restart Mode protections while AOCP, TSD, and fault input are Latch Mode protections.

Once auto-restart protection is triggered, switching is instantly terminated and the MOSFETs remain off. Then the FAN7631 keeps attempting to restart after the restart delay until the protection situation is removed. When a Latch Mode protection is triggered, the FAN7631 remains off until LV $_{\rm CC}$  drops to V $_{\rm LR}$  (5V) and then rises above LV $_{\rm CC,START}$  (12.5V).

#### 5.1. Overload Protection (OLP)

When the sensed voltage on the CS pin drops below  $V_{\text{OLP}}$  (-0.37V) for more than OLP blanking time,  $t_{\text{BOL}}$  (200ns),  $C_{\text{SS}}$  starts to be discharged by sinking current  $l_{\text{OLP}}$ . If the sensed voltage on the CS pin does not drop below  $V_{\text{OLP}}$  in the next switching cycle, the current on the SS pin is switched to charging current  $l_{\text{SS}1}$ , restoring  $V_{\text{SS}}$  as illustrated in Figure 35. If the CS pin voltage drops below  $V_{\text{OLP}}$  for in next consecutive switching cycle until  $C_{\text{SS}}$  voltage,  $V_{\text{SS}}$ , reaches  $V_{\text{SS\_START}}$  (1.6V); OLP is triggered and the gate drive signals remain off. Once the OLP is triggered, FAN7631 repeats charging and discharging  $C_{\text{SS}}$  four times, then restarts. The OLP delay,  $t_{\text{OLP}}$ , and self auto-restart time,  $t_{\text{AR}}$ , are given as:

$$t_{OLP} = C_{SS} \frac{3.4}{3 \times 10^{-5}} \tag{6}$$

$$t_{AR} = 8 \times C_{SS} \frac{2.6}{3 \times 10^{-5}} \tag{7}$$

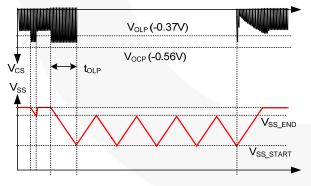



Figure 35. Overload Protection (OLP)

#### 5.2. Over-Current Protection (OCP)

When the CS pin voltage drops below  $V_{\text{OCP}}$  (-0.54V) for longer than the OCP blanking time,  $t_{\text{BO}}$  (200ns), OCP is triggered, terminating switching operation. Then, FAN7631 repeats charging and discharging  $C_{\text{SS}}$  four times before restarting.

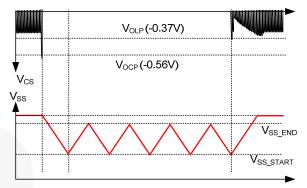



Figure 36. Over-Current Protection (OCP)

#### 5.3. Abnormal Over-Current Protection (AOCP)

If the secondary-side rectifier diodes are shorted, a large current with extremely high di/dt can flow through the MOSFET before OCP is triggered. AOCP is triggered with a short blanking time of 50ns,  $t_{BAO}$ , when the sensed voltage drops below -1.10V, terminating the switching operation. Once the protection is triggered,  $V_{SS}$  is discharged by an internal switch. Since it is a Latch Mode protection, the protection is reset when  $LV_{CC}$  drops to  $V_{LR}$  (5V).

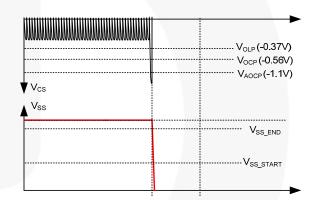



Figure 37. Abnormal Over-Current Protection (AOCP)

#### 5.4. Level-Change Over-Current Protection (OCP)

Even with soft-start, there can be large overshoot current for the initial several switching cycles until the resonant capacitor voltage reaches its steady-state value. To prevent the startup failure by OCP, the OCP threshold is changed to  $V_{AOCP}$  level while the Latch Mode AOCP is disabled during soft-start.

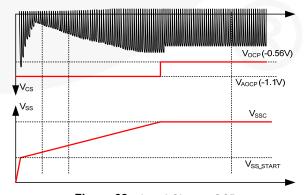



Figure 38. Level-Change OCP

#### 5.5. Over-Voltage Protection (OVP)

When the  $LV_{CC}$  reaches 23V, OVP is triggered. This protection is used when auxiliary winding of the transformer is utilized to supply  $V_{CC}$  to the FAN7631.

#### 5.6. Thermal Shutdown (TSD)

The thermal shutdown function is integrated to detect abnormal over-temperature, such as abnormal ambient temperature rising or over-driving of gate drive circuit. If the junction temperature exceeds T<sub>SD</sub> (130°C), thermal shutdown is triggered in Latch Mode.

#### 5.7. Line-UVLO

FAN7631 includes a precise line-UVLO (or brownout) function with programmable hysteresis voltage, as can be seen in Figure 39. When the line voltage is recovered, it starts up with soft-start, as shown in Figure 39. A hysteresis voltage between the start and stop voltage is programmable by I<sub>LINE</sub> and external resistor R1. In normal operation, the comparator's output is HIGH and I<sub>LINE</sub> is disabled I<sub>LINE</sub> is activated when the comparator's output is LOW, introducing hysteresis.

If necessary, C<sub>Filter</sub> can be used to reduce noise interference. Generally, hundreds of pico-farad to tens of nano-farad is adequate depending on the level of noise.

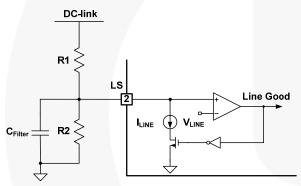



Figure 39. Line-UVLO

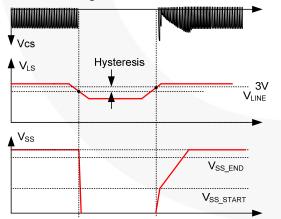
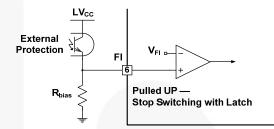



Figure 40. Line UVLO Waveforms


The DC link input-voltages for start and stop are calculated as:

$$V_{DL,STOP} = V_{LINE} \times \frac{R1 + R2}{R2}$$

$$V_{DL,START} = V_{DL,STOP} + I_{LINE} \times R1$$
(8)

#### 6. Simple Remote-On/Off

The power stage can be shut down with Latch Mode or Auto-Restart Mode, as shown in Figure 41. For the Latch Mode protection, the FI pin is used, which stops the switching immediately once the voltage on FI pin is pulled above  $V_{\text{FI}}$  (4V) using an opto-coupler. To configure an external protection with Auto-Restart Mode, an opto-coupler can be used on the LS pin. When voltage on the LS pin is pulled below  $V_{\text{LINE}}$  (3V), line UVLO is triggered. When LS pin voltage is pulled HIGH, above 3V, FAN7631 starts up softly.



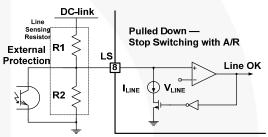



Figure 41. External Protection Circuits (Top: Latch Mode, Bottom: A/R Mode)

#### 7. Skip Cycle Operation

The FAN7631 provides the pulse-skip function to prevent the switching frequency from increasing too much at no-load condition. Figure 42 shows the internal block diagram for the control (CON) pin and its external configuration. The CON pin is typically connected to the collector terminal of the opto-coupler and the FAN7631 stops switching when the CON pin voltage drops below 0.4V. FAN7631 resumes switching when the CON pin voltage rises above 0.6V. The frequency that causes pulse skipping is given as:

$$f_{SKIP} = (\frac{5.8k\Omega}{R_{\min}} + \frac{4.6k\Omega}{R_{\max}}) \times 100kHz$$

$$(9)$$

$$R_{\min} = (\frac{5.8k\Omega}{R_{\min}} + \frac{4.6k\Omega}{R_{\max}}) \times 100kHz$$

$$(9)$$

$$R_{\min} = (\frac{5.8k\Omega}{R_{\min}} + \frac{4.6k\Omega}{R_{\max}}) \times 100kHz$$

Figure 42. Pulse-Skipping Circuit

## 8. PCB Layout Guideline

Figure 43 shows the PCB layout guideline to minimize the usage of jumpers. Good PCB layout improves power system efficiency and reliability and minimizes EMI. The Power Ground (PG) and Signal Ground (SG) should meet at a single point. Jumpers should be avoided, especially for the ground trace.

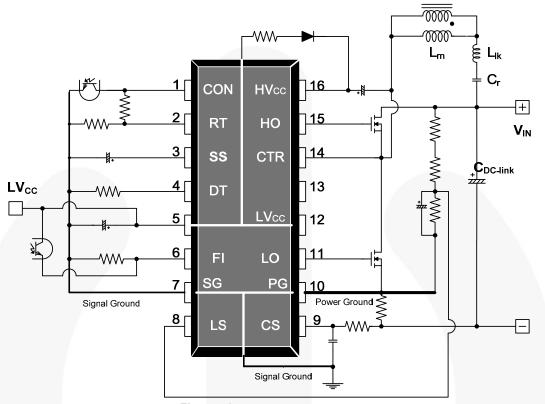



Figure 43. PCB Layout Guideline

## Typical Application Circuit (Half-Bridge LLC Resonant Converter)

| Application | Fairchild<br>Device | Input Voltage Range      | Rated Output Power | Output Voltage (Rated Current) |
|-------------|---------------------|--------------------------|--------------------|--------------------------------|
| LCD TV      | FAN7631             | 400V (20ms Hold-Up Time) | 192W               | 24V-8A                         |

#### **Features**

- High efficiency ( >94% at 400V<sub>DC</sub> input).
- Reduced EMI noise through zero-voltage-switching (ZVS).
- Enhanced system reliability with various protection functions.

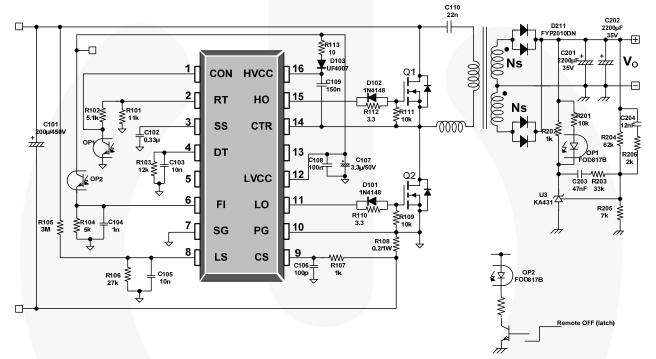



Figure 44. Typical Application Circuit

## **Typical Application Circuit** (Continued)

Usually, the LLC resonant converter requires large leakage inductance value. To obtain a large leakage inductance, sectional winding method is used.

Core: EER3542 (Ae=107 mm²)
 Bobbin: EER3542 (Horizontal)

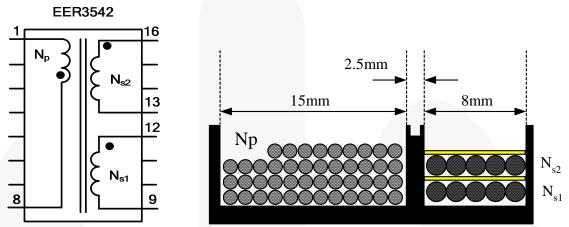



Figure 45. Winding Specifications

**Table 1. Winding Specifications** 

|                 | Pin (S → F) | Wire                 | Turns                          | Winding Method  |
|-----------------|-------------|----------------------|--------------------------------|-----------------|
| N <sub>p</sub>  | 8 → 1       | 0.12φ×30 (Litz Wire) | 45                             | Section Winding |
| N <sub>s1</sub> | 12 → 9      | 0.1φ×100 (Litz Wire) | 5                              | Section Winding |
| N <sub>s2</sub> | 16 → 13     | 0.1φ×100 (Litz Wire) | 0.1φ×100 (Litz Wire) 5 Section |                 |

|                                                  | Pin | Specification | Remark                              |
|--------------------------------------------------|-----|---------------|-------------------------------------|
| Primary-Side Inductance (L <sub>P</sub> )        | 1-8 | 630μH ±5%     | 100kHz, 1V                          |
| Primary-Side Effective Leakage (L <sub>R</sub> ) | 1-8 | 145μH ±5%.    | Short One of the Secondary Windings |

## **Physical Dimensions**

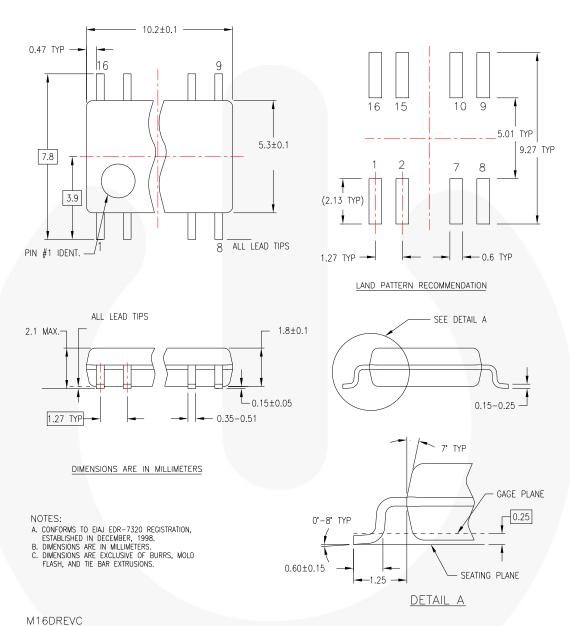



Figure 46. 16-Lead, Small-Outline Package (SOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.





#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ F-PESTM FRFET® AccuPower™ Global Power Resource<sup>SM</sup> AX-CAP™\* GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™ CorePLUS™ Gmax™ CorePOWER™ GTO™ CROSSVOLT™

CTL™ IntelliMAX™

Current Transfer Logic™ ISOPLANAR™

DEUXPEED® Making Small Speakers Sound Louder

Dual Cool™ and Better™

 Dual Cool™
 and Better™

 EcoSPARK®
 MegaBuck™

 EfficientMax™
 MICROCOUPLER™

 ESBC™
 MicroFET™

MicroPak™ MicroPak2™ Fairchild® Miller Drive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ Motion-SPM™ FACT mWSaver™ FAST<sup>®</sup> OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ OPTOPLANAR® FlashWriter®\*

PowerTrench<sup>®</sup> PowerXS™

Programmable Active Droop™

QFET<sup>®</sup> QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SUPERSOT™-3
SUPERSOT™-6
SUPERSOT™-8
SUPERMOS®
SYNCFET™
SYNC-Lock™
SYSTEM
GENERAL®\*

The Power Franchise®

franchise
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TiNYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®\*
μSerDes™

UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

- Life support devices or systems are devices or systems which, (a)
  are intended for surgical implant into the body or (b) support or
  sustain life, and (c) whose failure to perform when properly used in
  accordance with instructions for use provided in the labeling, can be
  reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS

#### **Definition of Terms**

| Delinition of Terms      |                                                    |                                                                                                                                                                                                     |  |  |
|--------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Datasheet Identification | Datasheet Identification Product Status Definition |                                                                                                                                                                                                     |  |  |
| Advance Information      | Formative / In Design                              | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |  |  |
| Preliminary              | First Production                                   | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |  |  |
| No Identification Needed | Full Production                                    | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |  |  |
| Obsolete                 | Not In Production                                  | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |  |  |

Rev. 161

<sup>\*</sup> Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

# AMEYA360 Components Supply Platform

## **Authorized Distribution Brand:**

























## Website:

Welcome to visit www.ameya360.com

## Contact Us:

## > Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

## > Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

## Customer Service :

Email service@ameya360.com

# Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com