

October 2014

FDPC8013S

PowerTrench® Power Clip 30 V Asymmetric Dual N-Channel MOSFET

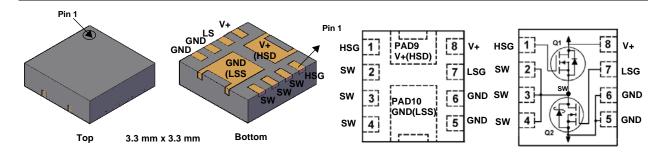
Features

Q1: N-Channel

■ Max $r_{DS(on)}$ = 9.6 m Ω at V_{GS} = 4.5 V, I_D = 10 A

Q2: N-Channel

- Max $r_{DS(on)} = 2.7 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 22 \text{ A}$
- Low inductance packaging shortens rise/fall times, resulting in lower switching losses
- MOSFET integration enables optimum layout for lower circuit inductance and reduced switch node ringing
- RoHS Compliant



General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFETTM (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load

MOSFET Maximum Ratings TA = 25 °C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain to Source Voltage		30	30	V
V _{GS}	Gate to Source Voltage	(Note 4)	±20	±20	V
	Drain Current -Continuous (Package limited)	Γ _C = 25 °C	20	55	
I_D	-Continuous	T _A = 25 °C	13 ^{1a}	26 ^{1b}	Α
	-Pulsed		40	100	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	21	97	mJ
D	Power Dissipation for Single Operation	T _A = 25 °C	1.6 ^{1a}	2.0 ^{1b}	W
P_{D}	Power Dissipation for Single Operation	T _A = 25 °C	0.8 ^{1c}	0.9 ^{1d}	T VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	77 ^{1a}	63 ^{1b}	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	151 ^{1c}	135 ^{1d}	°C/W
$R_{\theta,IC}$	Thermal Resistance, Junction to Case	5.0	3.5	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
13CF/15CF	FDPC8013S	Power Clip 33	13 "	12 mm	3000 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Chara	octeristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	Q1	30			V
DVDSS	Brain to Course Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	Q2	30			
ΔBV_{DSS}	Breakdown Voltage Temperature	$I_D = 250 \mu A$, referenced to 25 °C	Q1		16		mV/°C
ΔT_{J}	Coefficient	I_D = 10 mA, referenced to 25 °C	Q2		20		IIIV/ C
1	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	Q1			1	μΑ
IDSS	Zelo Gate Voltage Dialii Culletti	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	Q2			500	μΑ
1	Gate to Source Leakage Current,	V _{GS} = 20 V, V _{DS} = 0 V	Q1			100	nA
IGSS	Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q2			100	nA

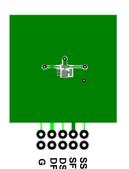
On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	Q1	1.2	1.5	3.0	V
· GS(III)	Cate to Course Timeshold Temage	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	Q2	1.2	1.7	3.0	
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage	$I_D = 250 \mu A$, referenced to 25 °C	Q1		-5		mV/°C
ΔT_{J}	Temperature Coefficient	$I_D = 10$ mA, referenced to 25 °C	Q2		-6		mv/°C
		$V_{GS} = 10 \text{ V}, I_D = 13 \text{ A}$			4.6	6.4	
		$V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$	Q1		6.7	9.6	
r	Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 13 \text{ A}, T_J = 125 ^{\circ}\text{C}$			6.6	9.2	mΩ
r _{DS(on)}	Diain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 26 \text{ A}$			1.4	1.9	1115.2
		$V_{GS} = 4.5 \text{ V}, I_D = 22 \text{ A}$	Q2		2.0	2.7	
		$V_{GS} = 10 \text{ V}, I_D = 26 \text{ A}, T_J = 125 ^{\circ}\text{C}$			1.9	2.6	
a	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 13 \text{ A}$	Q1		53		S
9 _{FS}	rorward transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 26 \text{ A}$	Q2		168		3

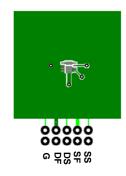
Dynamic Characteristics

C _{iss}	Input Capacitance	Q1: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2	827 2785	pF
C _{oss}	Output Capacitance	Q2:	Q1 Q2	333 997	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2	44 128	pF
R_g	Gate Resistance		Q1 Q2	0.5 0.5	Ω

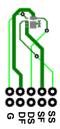
Switching Characteristics


t _{d(on)}	Turn-On Delay Time			Q1 Q2	6 11	ns
t _r	Rise Time	Q1: V _{DD} = 15 V, I _D = 13	B A, $R_{GEN} = 6 \Omega$	Q1 Q2	2 5	ns
t _{d(off)}	Turn-Off Delay Time	Q2: V _{DD} = 15 V, I _D = 26	6 A Rosu = 6 O	Q1 Q2	16 30	ns
t _f	Fall Time	VDD = 10 V, 10 = 20	7 A, NGEN - 0 32	Q1 Q2	2 4	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V		Q1 Q2	13 44	nC
Qg	Total Gate Charge	V _{GS} = 0 V to 4.5 V	$V_{DD} = 15 \text{ V},$ $I_{D} = 13 \text{ A}$	Q1 Q2	6 21	nC
Q _{gs}	Gate to Source Gate Charge		Q2 V _{DD} = 15 V,	Q1 Q2	2.2 7.2	nC
Q _{gd}	Gate to Drain "Miller" Charge		$I_D = 26 \text{ A}$	Q1 Q2	1.9 6.6	nC

Electrical Characteristics T_J = 25 °C unless otherwise noted


Symbol	Parameter	Parameter Test Conditions		Туре	Min	Тур	Max	Units
Drain-Sou	rce Diode Characteristics							
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 13 \text{ A}$ (No $V_{GS} = 0 \text{ V}, I_S = 26 \text{ A}$ (No	ote 2)	Q1 Q2		0.80 0.77	1.2 1.2	V
t _{rr}	Reverse Recovery Time	Q1 I _F = 13 A, di/dt = 100 A/μs		Q1 Q2		22 29		ns
Q _{rr}	Reverse Recovery Charge	Q2 $I_F = 26 \text{ A}, \text{ di/dt} = 300 \text{ A/}\mu\text{s}$		Q1 Q2		7 30		nC

Notes


 $1.R_{\theta,JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

a. 77 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 63 °C/W when mounted on a 1 in² pad of 2 oz copper

c. 151 °C/W when mounted on a minimum pad of 2 oz copper

d. 135 °C/W when mounted on a minimum pad of 2 oz copper

- 2 Pulse Test: Pulse Width < 300 $\mu\text{s},$ Duty cycle < 2.0%.
- 3. Q1 :EAS of 21 mJ is based on starting $T_J = 25$ °C; N-ch: L = 1.2 mH, $I_{AS} = 6$ A, $V_{DD} = 23$ V, $V_{GS} = 10$ V. 100% test at L= 0.1 mH, $I_{AS} = 14.5$ A. Q2: EAS of 97 mJ is based on starting $T_J = 25$ °C; N-ch: L = 0.6 mH, $I_{AS} = 18$ A, $V_{DD} = 23$ V, $V_{GS} = 10$ V. 100% test at L= 0.1 mH, $I_{AS} = 32.9$ A.
- $4. \ As \ an \ N\text{-ch device}, \ the \ negative \ V_{gs} \ \ rating \ is \ for \ low \ duty \ cycle \ pulse \ occurrence \ only. \ No \ continuous \ rating \ is \ implied.$

Typical Characteristics (Q1 N-Channel) T_J = 25 °C unless otherwise noted

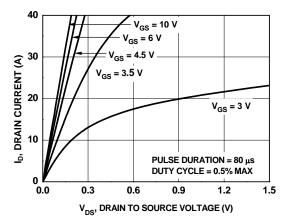


Figure 1. On Region Characteristics

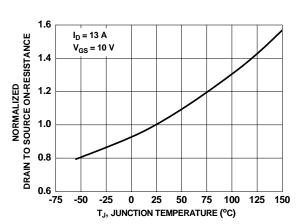


Figure 3. Normalized On Resistance vs Junction Temperature

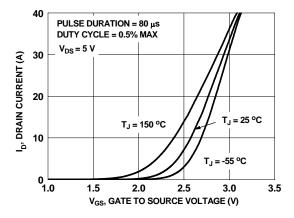


Figure 5. Transfer Characteristics

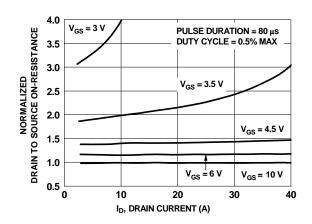


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

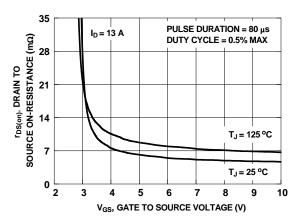


Figure 4. On-Resistance vs Gate to Source Voltage

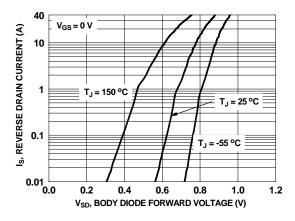


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (Q1 N-Channel) T_J = 25 °C unless otherwise noted

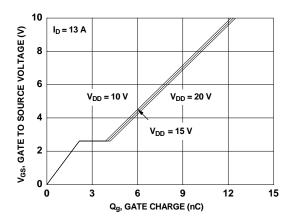


Figure 7. Gate Charge Characteristics

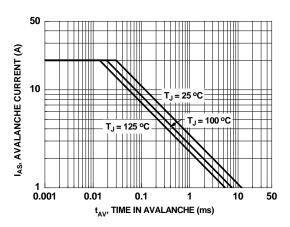


Figure 9. Unclamped Inductive Switching Capability

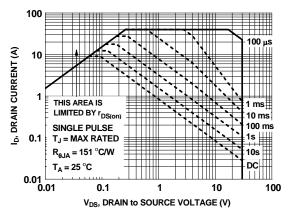


Figure 11. Forward Bias Safe Operating Area

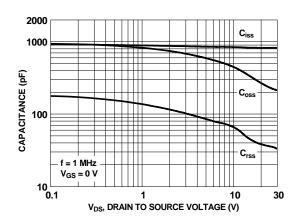


Figure 8. Capacitance vs Drain to Source Voltage

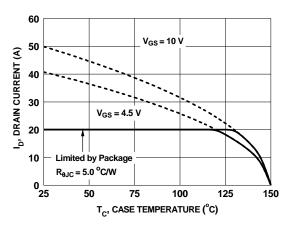


Figure 10. Maximum Continuous Drain Current vs. Ambient Temperature

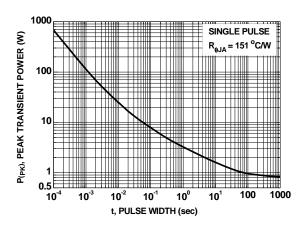


Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics (Q1 N-Channel) T_J = 25 °C unless otherwise noted

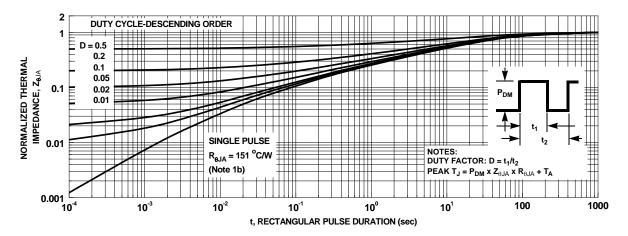


Figure 13. Junction-to-Ambient Transient Thermal Response Curve

Typical Characteristics (Q2 N-Channel) T_J = 25 °C unlenss otherwise noted

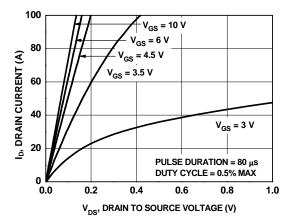


Figure 14. On-Region Characteristics

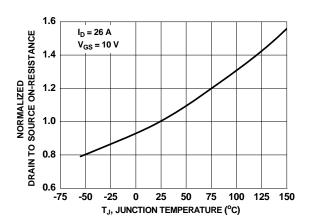


Figure 16. Normalized On-Resistance vs Junction Temperature

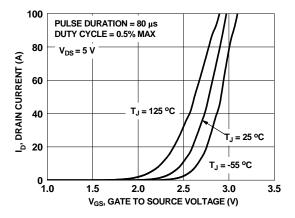


Figure 18. Transfer Characteristics

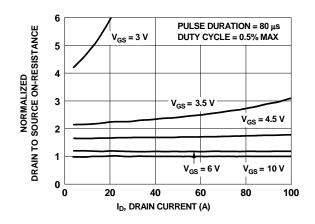


Figure 15. Normalized on-Resistance vs Drain Current and Gate Voltage

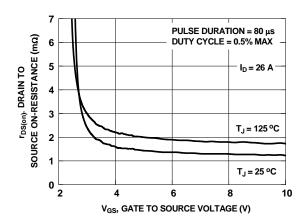


Figure 17. On-Resistance vs Gate to Source Voltage

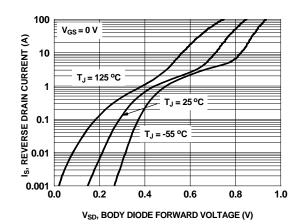


Figure 19. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (Q2 N-Channel) T_J = 25 °C unlenss otherwise noted

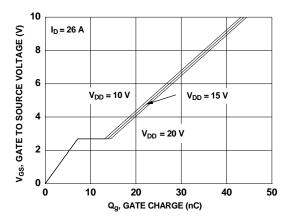


Figure 20. Gate Charge Characteristics

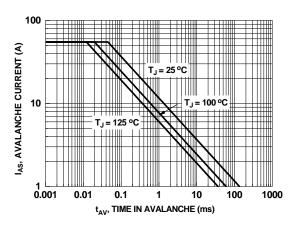


Figure 22. Unclamped Inductive Switching Capability

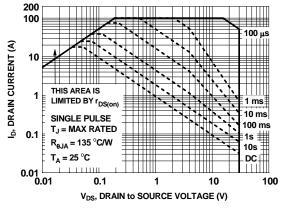


Figure 24. Forward Bias Safe Operating Area

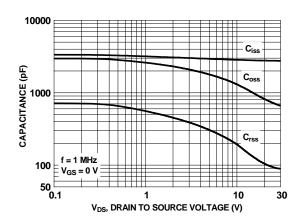


Figure 21. Capacitance vs Drain to Source Voltage

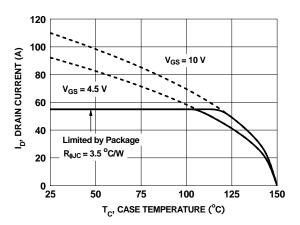


Figure 23. Maximum Continouns Drain Current vs Ambient Temperature

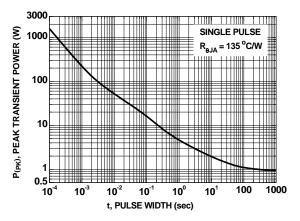
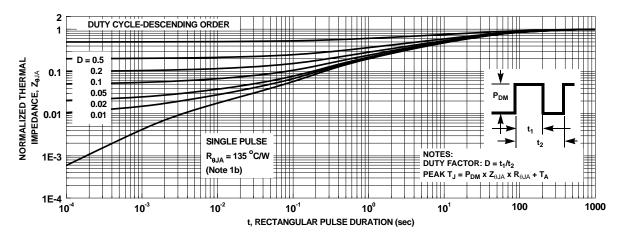
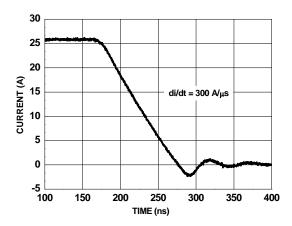


Figure 25. Single Pulse Maximum Power Dissipation

Typical Characteristics (Q2 N-Channel) $T_J = 25$ °C unlenss otherwise noted




Figure 26. Junction-to-Ambient Transient Thermal Response Curve

Typical Characteristics (continued)

SyncFETTM Schottky body diode Characteristics

Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDPC8013S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

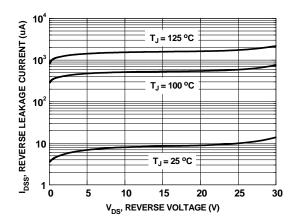
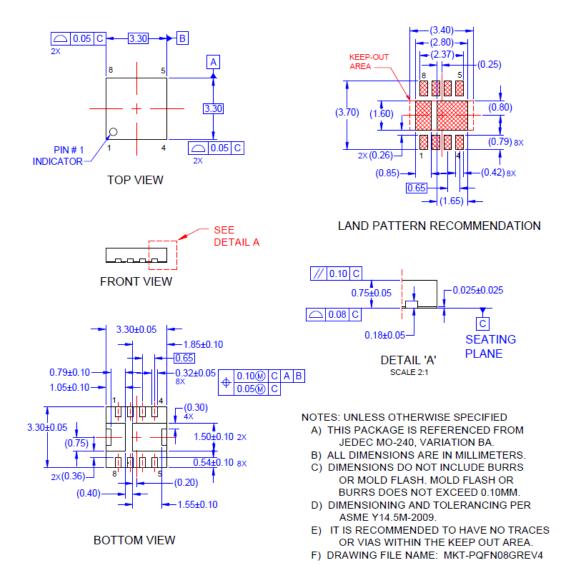



Figure 27. FDPC8013S SyncFETTM body diode reverse recovery characteristic

Figure 28. SyncFETTM body diode reverse leakage versus drain-source voltage

Dimensional Outline and Pad Layout

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: https://www.fairchildsemi.com/evaluate/package-specifications/packageDetails.html?id=PN_PQDEU-X08.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ FRFET® Awinda[®] AX-CAP[®]* Global Power ResourceSM BitSiC™ GreenBridge™ Green FPS™ Build it Now™

Green FPS™ e-Series™ CorePLUS™ CorePOWER™ Gmax™ CROSSVOLT™ GTO™ CTL™ IntelliMAX™ ISOPLANAR™ Current Transfer Logic™ Marking Small Speakers Sound Louder

DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™

ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®]

MotionMax™ MotionGrid[®] MTi[®] MTx[®] $\mathsf{FAST}^{\mathbb{R}}$ MVN[®] FastvCore™ $\mathsf{mWSaver}^{\circledR}$ FETBench™ OptoHiT™ **FPS™**

(1)_® PowerTrench® PowerXS^{TI}

Programmable Active Droop™

OFFT QSTM Quiet Series™ RapidConfigure™ тм

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™ Solutions for Your Success™

SPM®

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™ Sync-Lock™

SYSTEM ®* TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TIŃYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ 仙童™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

and Better™

MegaBuck™

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MICROCOUPLER™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I71

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com