3.3V, 12.288 MHz Audio Oversampling Clock Generator for USB Applications

Description

The NB3N3010B is a precision, low noise clock multiplier that generates an output frequency of 12.288 MHz. This is accomplished by using Frequency–Locked–Loop (FLL) techniques where a 4 kHz reference input is multiplied by 3072, or an 8 kHz input by 1536. The frequency multiplier is selected by the S0 pin.

The two LVCMOS output drivers are disabled to a logic Low with the ENABLEn pin set HIGH. The NB3N3010B operates from a single $+3.3~\rm V$ supply, and is available in the SOIC-8 pin package, and optionally in a DFN8 package. The operating temperature range is from $0^{\circ}\rm C$ to $+85^{\circ}\rm C$.

The NB3N3010B device provides the optimum combination of low cost, flexibility, and high performance. This makes it ideal for applications such as oversampling A-to-D and D-to-A converters from a low reference frequency, such as a USB start-of-frame (SOF) pulse.

Features

- Accepts 8 kHz or 4 kHz Reference Input Derived from USB Start-of-Frame
- Generates 12.288 MHz Frequency-Locked to the Reference
- Fully Integrated Frequency-Lock-Loop with Internal Loop Filter
- Low Skew Dual LVCMOS Outputs
- Very Low Phase Noise Preserves Codec Noise Floor
- Internal Voltage Regulator
- Supply Voltage Required: $+3.3 \text{ V} \pm 5\%$
- Temperature Range: 0°C to +85°C
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS*

SOIC-8 D SUFFIX CASE 751

DFN8 MN SUFFIX CASE 506AA

A = Assembly Location

L = Wafer Lot

Y = Year

W = Work Week

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)
*For additional marking information, refer to

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

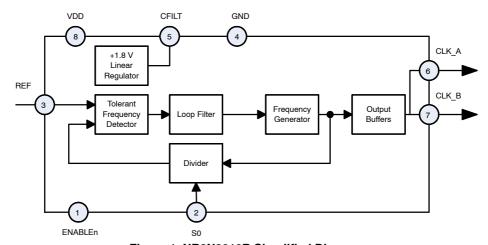


Figure 1. NB3N3010B Simplified Diagram

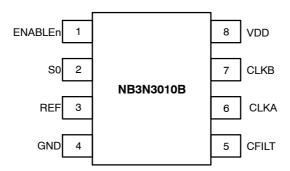


Figure 2. Pinout SOIC-8 / DFN8 (Top View)

Table 1. PIN DESCRIPTION

Pin	Symbol	I/O	Description	
1	ENABLEn	LVTTL/ LVCMOS Input	Low active Output Enable; Defaults HIGH when left open; Internal pull-up resistor to $\ensuremath{V_{DD}}.$	
2	S0	LVTTL/ LVCMOS Input	Frequency Select Input. See input frequency select Table 2 for details. Defaults HIGH when left open. Internal pull-up resistor to V_{DD} .	
3	REF	Input	Reference Clock input	
4	GND	Power Supply	Negative Supply Voltage; Ground 0 V. This pin provides GND return path to the VDD supply.	
5	CFILT	Analog	Connection for external filter capacitor for internal +1.8 V regulator; see Figure 4.	
6	CLKA	LVCMOS Output	Clock output, copy A (12.288 MHz)	
7	CLKB	LVCMOS Output	Clock output, copy B (12.288 MHz)	
8	VDD	Power Supply	Positive Supply Voltage, +3.3 V ±5%	

Table 2. ATTRIBUTES

Charac	Value	
ESD Protection	Human Body Model Machine Model	> 4 kV 400 V
R _{PU} – ENABLEn Input Pull-up R _{PU} – SO Input Pull-up Resist	48 kΩ 48 kΩ	
Moisture Sensitivity (Note 1)	Level 1	
Flammability Rating	UL 94 V-0 @ 0.125 in	
Transistor Count	12039	
Meets or exceeds JEDEC Spec		

^{1.} For additional information, see Application Note AND8003/D.

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{DD}	Positive Power Supply	GND = 0 V		4.6	V
V _I	Input Voltage (VIN)	GND = 0 V		-0.3 V to V _{DD} + 0.3 V	V
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-40 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 SOIC-8	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	SOIC-8	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN-8 (2x2) DFN-8 (2x2)	129 84	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN-8 (2x2)	35–40	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. DC CHARACTERISTICS V_{DD} = 3.3 V ±5%, GND = 0 V, T_{A} = 0°C to +85°C, Note 3.

Symbol	Characteristic	Min	Тур	Max	Unit
V_{DD}	Power Supply Voltage	3.13	3.3	3.47	V
I _{DDOEL}	Power Supply Current (operating, i.e. ENABLEn is LOW) Outputs Unloaded		21	35	mA
I _{DDOEH}	Power Supply Current (standby, i.e. ENABLEn is HIGH)		415	600	uA
V _{IH}	Input HIGH Voltage (REF, ENABLEn, S0)	2.0		V _{DD} + 0.3	V
V _{IL}	Input LOW Voltage (REF, ENABLEn, S0)	GND - 0.3		0.8	V
V _{OH}	Output HIGH Voltage (CLKA, CLKB) , I _{OH} = -12 mA	2.4			V
V _{OL}	Output LOW Voltage (CLKA, CLKB), I _{OL} = 12 mA			0.4	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{2.} JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

^{3.} C_{FILT} capacitor must be installed; see Figure 4.

Table 5. AC CHARACTERISTICS V_{DD} = 3.3 V \pm 5%, GND = 0 V, T_{A} = 0°C to +85°C (Note 4)

Symbol	Characteristic		Min	Тур	Max	Unit
f _{out}	Output Clock Frequency: CLKA & CLKB f _{OUT} = 8 kHz x 1536 f _{OUT} = 4 kHz x 3072	S0 = 1 S0 = 0	12.25728 12.25728	12.288 12.288	12.31872 12.31872	MHz
f _{REF}	Reference Input Frequency	S0 = 1 S0 = 0	7.98 3.99	8 4	8.02 4.01	kHz
t _{jit(per)-ref}	Reference Input Period Jitter (pk-pk)				250	ns
t _{REFH}	Reference Input Pulse Width (high)	S0 = 1 S0 = 0	33 33		68000 136000	ns
t _{CLKH}	CLKA, CLKB output width, high		13			ns
t _{CLKL}	CLKA, CLKB output width, low		13			ns
t _r	CLKA, CLKB rise time 10% – 90%				4	ns
t _f	CLKA, CLKB fall time 90% – 10%				4	ns
t _{jit(per)}	CLKA, CLKB period jitter (over 10k cycles)	peak-to-peak RMS			250 20	ps
t _{jit(cc)}	CLK_A, CLKB cycle-to-cycle jitter (1k cycles)	peak-to-peak RMS			300 35	ps
t _{sk(LH)}	CLKA to CLKB output skew (low-to-high transitions)				700	ps
t _{sk(HL)}	CLKA to CLKB output skew (high-to-low transitions)				700	ps
	Power Valid to ENABLEn				10	ms
	ENABLEn to CLKA/CLKB			50	100	ms

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- Outputs loaded with 15 pF max to ground. C_{FILT} capacitor must be installed; see Figure 4.
 Maximum time required after power is applied to the MCLK FLL until it is ready to accept ENABLEn active.

APPLICATION INFORMATION

Figure 1 shows the simplified block diagram of the NB3N3010B device.

The primary function of the NB3N3010B is to accept a selectable 4 kHz or 8 kHz input reference clock, REF, and then multiply it to 12.288 MHz output frequency.

Frequency Select - SO

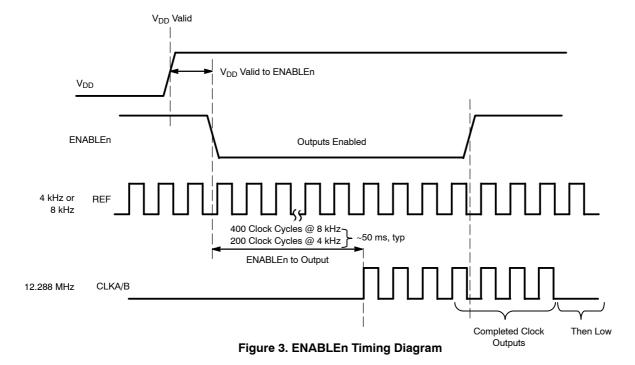
Either of two expected input REF frequencies, 4 kHz or 8 kHz, will be multiplied by the FLL to achieve 12.288 MHz at the low-skew CLKA and CLKB outputs by selecting the S0 pin; see Table 6.

The pulse high time $(T_{\rm HI})$ of the input reference signal may vary widely depending on the application. See AC specifications for details.

Output Enable - ENABLEn

A Low active output enable input pin, ENABLEn, is provided. When the ENABLEn input is High inactive, both clock outputs are driven to a logic Low.

The NB3N3010B implements a delay, specified as ENABLEn to Output Delay in the AC Specifications, from the assertion of ENABLEn to the first rising edges on the clock outputs. This delay insures that CLKA and CLKB output pulses are within specification before the output drivers are enabled. When ENABLEn transitions from Low to High (de-asserts), the current cycle of the clock outputs completes normally then the outputs will be held Low. The ENABLEn signal is asynchronous to either the REF input or CLK_x outputs.


Table 6. INPUT FREQUENCY SELECT AND OUTPUT ENABLE FUNCTIONS

ENABLEn*	S0*	f _{REF}	FLL Multiplier	CLKA & CLKB Frequency
0	L	4 kHz	3072	12.288 MHz
0	Н	8 kHz	1536	12.288 MHz
1	х	х	х	Disabled Low

^{*}Defaults High when left open.

Typical Power On Sequence

- 1. Power On
- 2. Reference Clock present; must be switching before ENABLEn goes High.
- 3. Output Enable, ENABLEn, High-to-Low

CFILT for 1.8 V Regulator

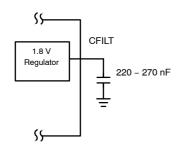


Figure 4. CFILT Capacitor

A low noise 1.8 V LDO/Regulator is integrated to provide a clean supply for the CLKA/CLKB output buffers. The LDO requires a decoupling capacitor in the range of 220 nF to 270 nF for compensation and high frequency PSR, and should be located near the device. The purpose of this design technique is to isolate the high switching noise of the digital outputs from the relatively sensitive internal analog phase–locked loop.

Figure 5. REF Input Timing Diagram

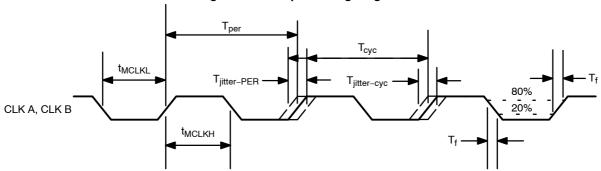


Figure 6. Clock Output Timing Diagram

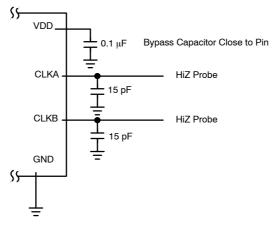
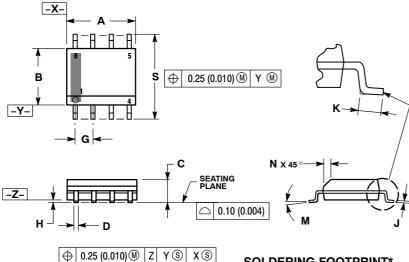


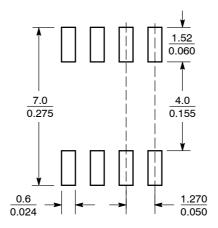
Figure 7. Test Circuit


ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N3010BDG	SOIC-8 (Pb-Free)	98 Units / Rail
NB3N3010BDR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NB3N3010BMNG*	DFN-8 (Pb-Free)	TBD Units / Rail
NB3N3010BMNR4G*	DFN-8 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*To order other package and voltage variants, please contact your ON Semiconductor sales representative.

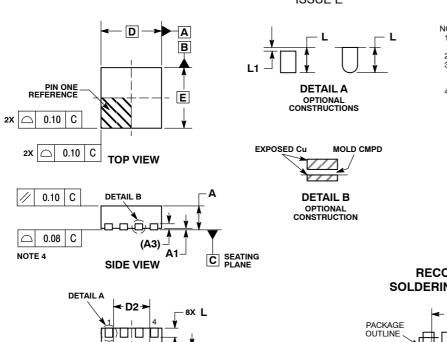
PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
- 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
s	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*



 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DFN8 2x2, 0.5PCASE 506AA-01 ISSUE E

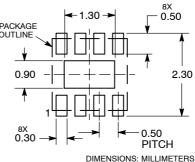
0.10 C

0.05

#

BOTTOM VIEW

AB


С поте з

NOTES:

- DIMENSIONING AND TOLERANCING PER
 ASME Y14 5M 1994
- ASME Y14.5M, 1994 . 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.20 MM FROM TERMINAL TIP.
 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.80	1.00			
A1	0.00	0.05			
А3	0.20	REF			
b	0.20	0.30			
ם	2.00	BSC			
D2	1.10	1.30			
Е	2.00	BSC			
E2	2 0.70 0.9				
е	0.50 BSC				
K	0.30 REF				
L	0.25	0.35			
L1	0.10				

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com