Small Signal MOSFET

-20 V, -281 mA, Single P-Channel, SOT-883 (XDFN3) 1.0 x 0.6 x 0.4 mm Package

Features

- Single P-Channel MOSFET
- Ultra Low Profile SOT-883 (XDFN3) 1.0 x 0.6 x 0.4 mm for Extremely Thin Environments Such as Portable Electronics
- Low R_{DS(on)} Solution in the Ultra Small 1.0 x 0.6 mm Package
- 1.5 V Gate Drive
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

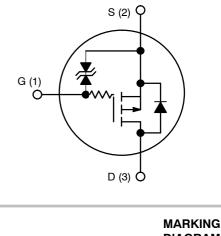
- High Side Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Solutions

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Parameter			Symbol	Value	Unit			
Drain-to-Source Voltage			V _{DSS}	-20	V			
Gate-to-Source Volta	Gate-to-Source Voltage			±8	V			
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	Ι _D	-281	mA			
Current (Note 1)	Sidle	$T_A = 85^{\circ}C$		-202				
	t ≤ 5 s	$T_A = 25^{\circ}C$		-332				
Power Dissipation (Note 1)	Steady State	$T_A = 25^{\circ}C$	PD	155	mW			
	t ≤ 5 s			218				
Pulsed Drain Current	t _p = 10 μs		I _{DM}	-842	mA			
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C			
Source Current (Body Diode) (Note 2)			۱ _S	-130	mA			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C			

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.
- 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D Max
–20 V	1.3 Ω @ –4.5 V	
	2.0 Ω @ –2.5 V	001
	3.4 Ω @ –1.8 V	–281 mA
	4.5 Ω @ –1.5 V	

P-CHANNEL MOSFET

ORDERING INFORMATION

Device	Package	Shipping [†]
NTNS3A65PZT5G	SOT-883 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2012 September, 2012 – Rev. 0

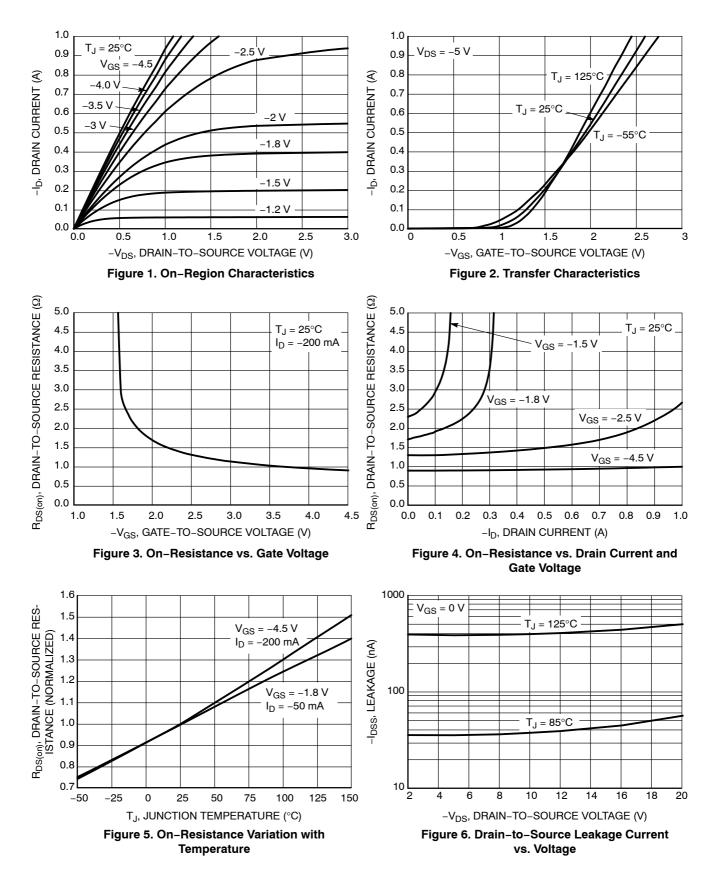
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit	
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	804	°C/W	
Junction-to-Ambient – t \leq 5 s (Note 3)	$R_{\theta JA}$	574	C/VV	

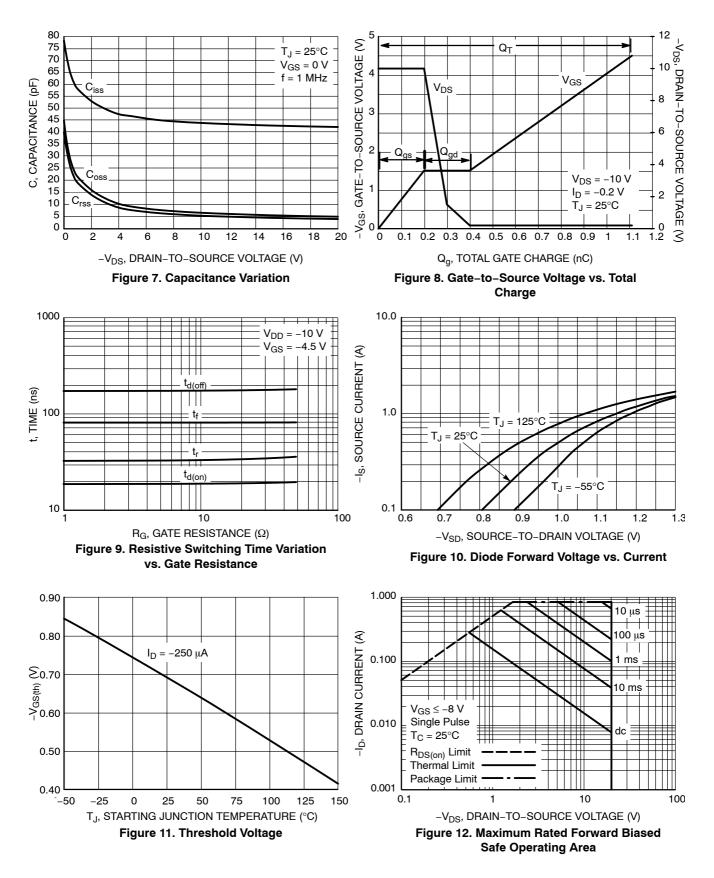
3. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = -250 μ A		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	$I_D = -250 \ \mu A$, ref	$I_D = -250 \ \mu\text{A}$, ref to 25°C		11		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -20 V	T _J = 25°C			-1	μA
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±5 V			±10	μA
ON CHARACTERISTICS (Note 4)	•						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS},\ I_{D}=-250\ \mu A$		-0.4		-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.2		mV/°C
Drain-to-Source On Resistance		V_{GS} = -4.5 V, I _D =	–200 mA		0.9	1.3	
		V_{GS} = -2.5 V, I _D =	–100 mA		1.3	2.0	Ω
	R _{DS(on)}	V_{GS} = -1.8 V, I _D = -50 mA			1.8	3.4	
		V _{GS} = -1.5 V, I _D =	–10 mA		2.3	4.5	Ω
Forward Transconductance	9 FS	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -200 \text{ mA}$			0.58		S
Source-Drain Diode Voltage	V _{SD}	V_{GS} = 0 V, I _S = -	100 mA		-0.8	-1.2	V
CHARGES & CAPACITANCES	•				•	•	•
Input Capacitance	Ciss				44		


C _{ISS}			44		
C _{OSS}	V_{GS} = 0 V, freq = 1 MHz, V_{DS} = –10 V		6.7		pF
C _{RSS}			5.5		
Q _{G(TOT)}	V_{GS} = -4.5 V, V_{DS} = -10 V; I _D = -200 mA		1.1		nC
Q _{G(TH)}			0.1		
Q _{GS}			0.2		ne
Q _{GD}			0.2		
	C _{OSS} C _{RSS} Q _{G(TOT)} Q _{G(TH)} Q _{GS}	$\begin{tabular}{ c c c c c } \hline C_{OSS} & $V_{GS} = 0 $ V, $freq = 1 $ MHz, $V_{DS} = -10 $ V$ \\ \hline C_{RSS} & $Q_{G(TOT)}$ \\ \hline $Q_{G(TOT)}$ & $V_{GS} = -4.5 $ V, $V_{DS} = -10 $ V;$ \\ \hline Q_{GS} & $I_D = -200 $ mA$ & $I_D $	$\begin{tabular}{ c c c c c c } \hline C_{OSS} & $V_{GS} = 0 $ V, $freq = 1 $ MHz, $V_{DS} = -10 $ V$ \\ \hline C_{RSS} & $Q_{G(TOT)}$ \\ \hline $Q_{G(TOT)}$ & $V_{GS} = -4.5 $ V, $V_{DS} = -10 $ V;$ \\ \hline Q_{GS} & $I_D = -200 $ mA$ & \Box &$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

SWITCHING CHARACTERISTICS, V_{GS} = 4.5 V (Note 4)


Turn-On Delay Time	t _{d(ON)}		18	
Rise Time	tr	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$	32	20
Turn-Off Delay Time	t _{d(OFF)}	$I_D = -200 \text{ mA}, R_G = 2 \Omega$	178	ns
Fall Time	t _f		84	

4. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

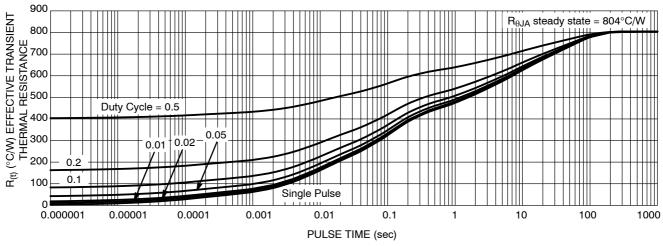
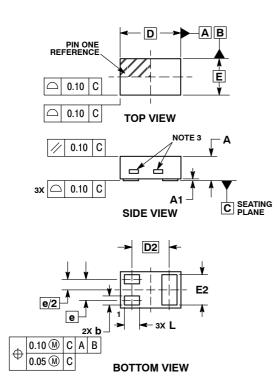
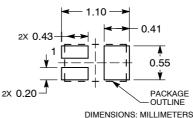



Figure 13. Thermal Response

PACKAGE DIMENSIONS


SOT-883 (XDFN3), 1.0x0.6, 0.35P CASE 506CB

ISSUE A



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- CONTROLLING DIMENSION: MILLIMETERS.
 EXPOSED COPPER ALLOWED AS SHOWN.

RECOMMENDED SOLDER FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **ON** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Depres 441-22-700-0010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

► Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- ≻ Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com