June 2013 ## **FJD5553** ## **NPN Silicon Transistor** ## **Features** - · Fast Speed Switching - · Wide Safe Operating Area - · High Voltage Capability ## **Application** - · Electronic Ballast - Switch Mode Power Supplies ## **Ordering Information** | Part Number | Marking | Package | Packing Method | |-------------|---------|---------|----------------| | FJD5553TM | J5553 | D-PAK | Tape and Reel | ## **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted. | Symbol | Parameter | Value | Units | |-------------------|------------------------------------|--------------|-------| | BV _{CBO} | Collector-Base Voltage | 1050 | V | | BV _{CEO} | Collector-Emitter Voltage | 400 | V | | BV _{EBO} | Emitter-Base Voltage | 14 | V | | I _C | Collector Current (DC) | 3 | Α | | I _{CP} | Collector Current (Pulse) | 6 | Α | | I _B | Base Current (DC) | 1 | Α | | I _{BP} | Base Current (Pulse) | 2 | Α | | TJ | Junction Temperature | 150 | °C | | T _{STG} | Storage Junction Temperature Range | - 55 to +150 | °C | ## **Thermal Characteristics** Values are at T_A = 25°C unless otherwise noted. | Symbol | Parameter | | Value | Units | |-----------------------|---|--------|-------|-------| | P _D | Total Device Dissipation T _A | = 25°C | 1.25 | W | | $R_{\theta ja}^{(1)}$ | Thermal Resistance, Junction to Ambient | | 100 | °C/W | 1 #### Note 1. $R_{\theta ja}$ test board and fixture under natural convection; JESD51-3 recommended thermal test board. ## **Electrical Characteristics**(2) Values are at $T_A = 25$ °C unless otherwise noted. | Symbol | Parameter | Conditions | Min. | Тур. | Max | Units | |-----------------------|--------------------------------------|--|------|------|------|-------| | BV _{CBO} | Collector-Base Breakdown Voltage | $I_C = 500 \mu A, I_E = 0$ | 1050 | | | ٧ | | BV _{CEO} | Collector-Emitter Breakdown Voltage | $I_C = 5 \text{ mA}, I_B = 0$ | 400 | | | V | | BV _{EBO} | Emitter-Base Breakdown Voltage | $I_E = 500 \mu\text{A}, I_C = 0$ | 14 | | | V | | h _{FE} | DC Current Gain | $V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA}$ | 10 | | | | | | | $V_{CE} = 3 \text{ V, } I_{C} = 0.4 \text{ A}$ | 30 | | 60 | | | V _{CE} (sat) | Collector-Emitter Saturation Voltage | I _C = 1 A, I _B = 0.2 A | | 0.23 | 0.50 | V | | V _{BE} (sat) | Base-Emitter Saturation Voltage | I _C = 1 A, I _B = 0.2 A | | | 1.2 | V | | C _{ob} | Output Capacitance | V _{CB} = 10 V, f = 1 MHz | | 45 | | pF | | t _{ON} | Turn-On Time | V _{CC} = 125 V, I _C = 0.5 A, | | | 1.0 | μs | | t _{STG} | Storage Time | $I_{B1} = 45 \text{ mA}, I_{B2} = 0.5 \text{ A},$ $I_{C} =$ | | | 1.2 | μs | | t _F | Fall Time | | | 0.3 | | μs | | t _{ON} | Turn-On Time | V _{CC} = 250 V, I _C = 2.5 A, | | | 2.0 | μs | | t _{STG} | Storage Time | $I_{B1} = 0.5 \text{ A}, I_{B2} = 1.0 \text{ A},$ $I_{RL} = 100 \Omega$ | | | 2.5 | μs | | t _F | Fall Time | | | | 0.3 | μs | | EAS | Avalanche Energy | L = 2 mH | 3.5 | | | mJ | ### Note: 2. Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2%. ## **Typical Performance Characteristics** Figure 1. DC Current Gain Figure 3. Saturation Voltage Figure 5. Resistive Load Switching Figure 2. Saturation Voltage Figure 4. Resistive Load Switching Figure 6. Power Derating ## **Physical Dimensions** ## D-PAK Figure 7. TO252 (D-PAK), MOLDED, 3-LEAD, OPTION AA&AB (ACTIVE) Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/. For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packing_dwg/PKG-T0252A03.pdf. #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. FPS™ AccuPower™ F-PFS™ AX-CAP®, **FRFET®** BitSiC™ Global Power ResourceSM GreenBridge™ Build it Now™ CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™ Gmax™ CROSSVOLT™ CTL^TM GTO™ Current Transfer Logic™ IntelliMAX™ ISOPLANAR™ **DEUXPEED®** Making Small Speakers Sound Louder Dual Cool™ EcoSPARK® EfficientMax™ MegaBuck™ $\mathsf{ESBC}^{\mathsf{TM}}$ MICROCOUPLER™ ® MicroFET™ MicroPak™ Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT' FAST® MotionMax™ mWSaver™ OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ OPTOPLANAR® PowerTrench® PowerXS™ Programmable Active Droop™ OFET' QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEAL TH™ SuperFET SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ SYSTEM GENERAL®* TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™ UHC Ultra FRFET™ UniFFT™ **VCX™** VisualMax™ VoltagePlus™ and Better™ MicroPak2™ MillerDrive™ #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ## **ANTI-COUNTERFEITING POLICY** Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors #### PRODUCT STATUS DEFINITIONS | Definition of Terms | | | | | |---------------------------------|-----------------------|---|--|--| | Datasheet Identification | Product Status | Definition | | | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | Rev. 164 ^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor. # AMEYA360 Components Supply Platform ## **Authorized Distribution Brand:** ## Website: Welcome to visit www.ameya360.com ## Contact Us: ## > Address: 401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China ## > Sales: Direct +86 (21) 6401-6692 Email amall@ameya360.com QQ 800077892 Skype ameyasales1 ameyasales2 ## Customer Service : Email service@ameya360.com # Partnership : Tel +86 (21) 64016692-8333 Email mkt@ameya360.com