BF1108; BF1108R

Silicon RF switches

Rev. 04 — 29 May 2008

Product data sheet

1. Product profile

1.1 General description

These switches are a combination of a depletion type Field-Effect Transistor (FET) and a band-switching diode in an SOT143B (BF1108) or SOT143R (BF1108R) package. The low loss and high isolation capabilities of these devices provide excellent RF switching functions. The gate of the MOSFET can be isolated from ground with the diode, resulting in low losses. Integrated diodes between gate and source and between gate and drain protect against excessive input voltage surges.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features

Specially designed for low loss RF switching up to 1 GHz

1.3 Applications

- Various RF switching applications such as:
 - Passive loop through for VCR tuner
 - Transceiver switching

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
L _{ins(on)}	on-state insertion loss	$R_S = R_L = 50 \Omega; f \le 1 \text{ GHz};$ $V_{SK} = V_{DK} = 0 \text{ V}; I_F = 0 \text{ mA}$	1 -	-	2	dB
ISL _{off}	off-state isolation	$\begin{aligned} R_S &= R_L = 50 \ \Omega; \ f \leq 1 \ GHz; \\ V_{SK} &= V_{DK} = 5 \ V; \ I_F = 1 \ mA \end{aligned}$	30	-	-	dB
R _{DSon}	drain-source on-state resistance	$V_{KS} = 0 \text{ V}; I_D = 1 \text{ mA}$	-	12	20	Ω
$V_{GS(p)}$	gate-source pinch-off voltage	$V_{DS} = 1 \text{ V}; I_D = 20 \mu A$	-	-3	-4	V

^[1] $I_F = \text{diode forward current}$.

Pinning information

Table 2

Table 2.	Pinning		
Pin	Description	Simplified outlin	e Graphic symbol
BF1108 (SOT143B)		
1	FET gate; diode anode	4	4
2	diode cathode	4 3	4 3
3	source	[1]	
4	drain	1 2	1 2 001aai042
BF1108R	(SOT143R)		
1	FET gate; diode anode		
2	diode cathode	3 4	3 4
3	source	[1]	
4	drain	[1] 2 1	2 1 001aai043

^[1] Drain and source are interchangeable.

Ordering information 3.

Ordering information Table 3.

Type number	Packag	je	
	Name	Description	Version
BF1108	-	plastic surface-mounted package; 4 leads	SOT143B
BF1108R	-	plastic surface-mounted package; reverse pinning; 4 leads	SOT143R

4. Marking

Table 4. **Marking**

Type number	Marking code
BF1108	NGp
BF1108R	NHp

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
FET					
V_{DS}	drain-source voltage		-	3	V
V_{SD}	source-drain voltage		-	3	V
V_{DG}	drain-gate voltage		-	7	V
V_{SG}	source-gate voltage		-	7	V
I_D	drain current		-	10	mΑ
Diode					
V_{R}	reverse voltage		-	35	V
I _F	forward current		-	100	mΑ
FET and di	iode				
T _{stg}	storage temperature		-65	+150	°C
T _j	junction temperature		-	150	°C

6. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-sp)}$	thermal resistance from junction to solder point		[1] 250	K/W

^[1] Soldering point of FET gate and diode anode lead.

7. Static characteristics

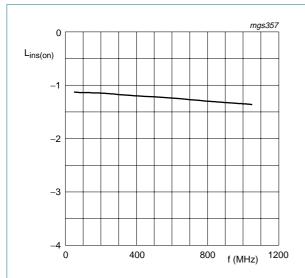
 Table 7.
 Static characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified.

,	•					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
FET						
$V_{(BR)GSS}$	gate-source breakdown voltage	$V_{DS} = 0 \text{ V}; I_{GS} = 0.1 \text{ mA}$	7	-	-	V
$V_{GS(p)}$	gate-source pinch-off voltage	V_{DS} = 1 V; I_D = 20 μA	-	-3	-4	V
I _{DSX}	drain cut-off current	$V_{GS} = -5 \text{ V}; V_{DS} = 2 \text{ V}$	-	-	10	μΑ
I _{GSS}	gate leakage current	$V_{GS} = -5 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	100	nA
R _{DSon}	drain-source on-state resistance	$V_{GS} = 0 \text{ V}; I_D = 1 \text{ mA}$	-	12	20	Ω
Diode						
V _F	forward voltage	I _F = 10 mA	-	-	1	V
I _R	reverse current	V _R = 25 V	-	-	50	nΑ
		$V_R = 20 \text{ V}; T_{amb} = 75 ^{\circ}\text{C}$	-	-	1	μΑ

8. Dynamic characteristics

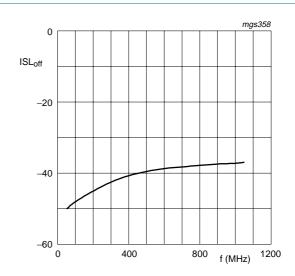
Table 8. Dynamic characteristics


Common cathode; $T_{amb} = 25 \,^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
FET and	diode						
L _{ins(on)}	on-state insertion loss	$V_{SK} = V_{DK} = 0 \text{ V}; I_F = 0 \text{ mA}$	[1]				
		$R_S = R_L = 50 \Omega$; $f \le 1 GHz$		-	-	2	dB
		$R_S = R_L = 50 \Omega$; $f = 1 GHz$		-	1.3	-	dB
		$R_S = R_L = 75 \Omega$; $f \le 1 \text{ GHz}$		-	-	3	dB
ISL _{off}	off-state isolation	$V_{SK} = V_{DK} = 5 \text{ V}; I_F = 1 \text{ mA}$					
		$R_S = R_L = 50 \Omega$; $f \le 1 GHz$		30	-	-	dB
		$R_S = R_L = 50 \Omega$; $f = 1 GHz$		-	38	-	dB
		$R_S = R_L = 75 \Omega$; $f \le 1 \text{ GHz}$		30	-	-	dB
R _{DSon}	drain-source on-state resistance	$V_{KS} = 0 \text{ V}; I_D = 1 \text{ mA}$		-	12	20	Ω
C _i	input capacitance	f = 1 MHz	[2]				
		$V_{SK} = V_{DK} = 5 \text{ V}; I_F = 1 \text{ mA}$		-	1	-	pF
		$V_{SK} = V_{DK} = 0 \text{ V}; I_F = 0 \text{ mA}$		-	0.65	0.9	pF
Co	output capacitance	f = 1 MHz	[2]				
		$V_{SK} = V_{DK} = 5 \text{ V}; I_F = 1 \text{ mA}$		-	1	-	pF
		$V_{SK} = V_{DK} = 0 \text{ V}; I_F = 0 \text{ mA}$		-	0.65	0.9	pF
Diode							
C_{d}	diode capacitance	$f = 1 MHz; V_R = 0 V$		-	1.1	-	pF
r_D	diode forward resistance	$I_F = 2 \text{ mA}$; $f = 100 \text{ MHz}$	[3]	-	-	0.7	Ω

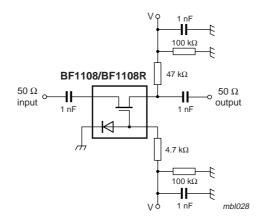
^[1] $I_F = diode$ forward current.

^[2] C_i is the series connection of C_{GS} and C_{GK} ; C_0 is the series connection of C_{GD} and C_{GK} .


^[3] Guaranteed on AQL basis; inspection level S4, AQL 1.0.

 $V_{SK} = V_{DK} = 0$ V; $R_S = R_L = 50~\Omega;$ $I_F = 0$ mA (diode forward current).

Measured in test circuit see Figure 3.


Fig 1. On-state insertion loss as a function of frequency; typical values

 V_{SK} = V_{DK} = 5 V; R_S = R_L = 50 $\Omega;$ I_F = 1 mA (diode forward current).

Measured in test circuit see Figure 3.

Fig 2. Off-state isolation as a function of frequency; typical values

On-state: V = 0 V. Off-state: V = 5 V.

Fig 3. Test circuit

9. Package outline

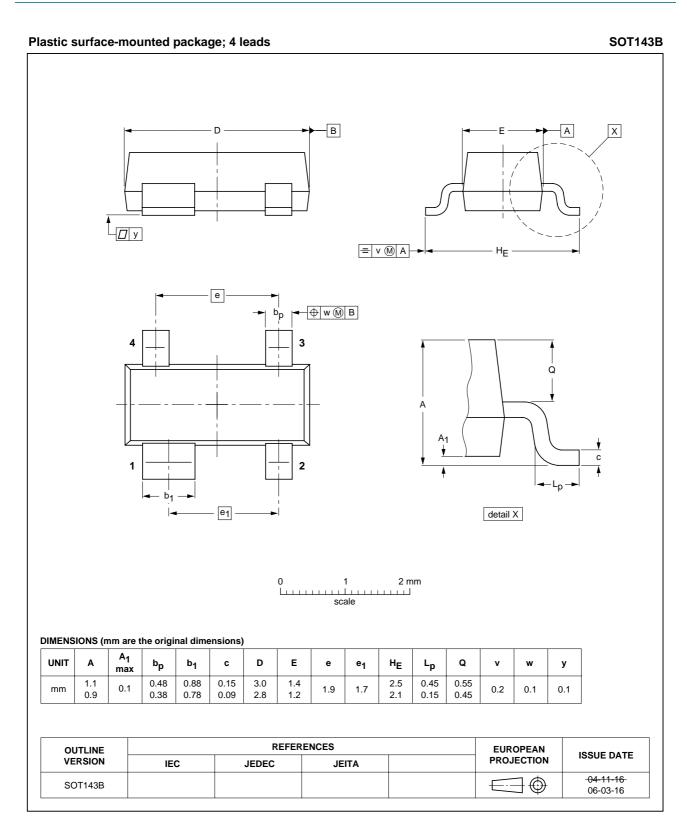
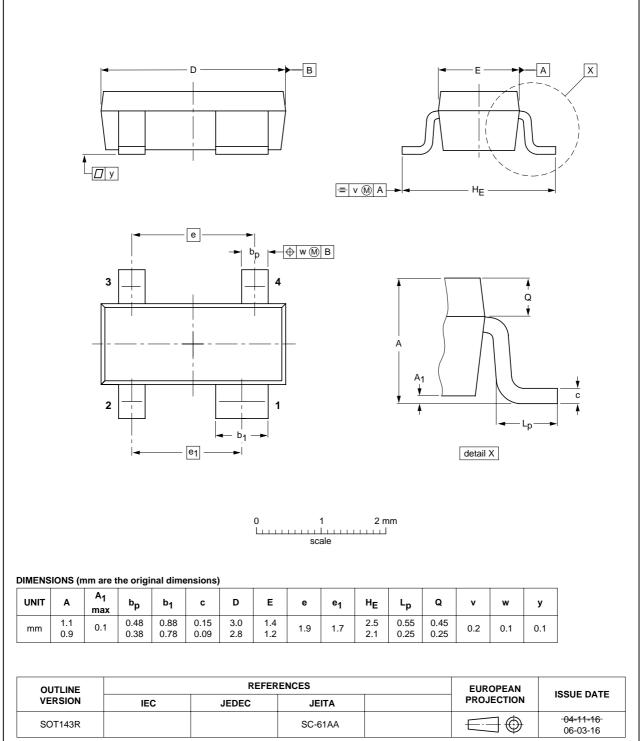



Fig 4. Package outline SOT143B

Plastic surface-mounted package; reverse pinning; 4 leads

SOT143R

7 of 10

Package outline SOT143R Fig 5.

Product data sheet

10. Abbreviations

Table 9. Abbreviations

Acronym	Description
AQL	Acceptable Quality Level
MOSFET	Metal-Oxide Semiconductor Field-Effect Transistor
RF	Radio Frequency
S4	Special inspection level 4
VCR	VideoCassette Recorder

11. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BF1108_BF1108R_4	20080529	Product data sheet	-	BF1108_1108R_3
Modifications:		his data sheet has been rede IXP Semiconductors.	esigned to comply	with the new identity
	 Legal texts have 	e been adapted to the new o	company name wh	ere appropriate.
	 Symbol notation Semiconductor 	on has been adapted to comp rs.	bly with the current	t guidelines of NXP
BF1108_1108R_3 (9397 750 06477)	19991118	Product data sheet	-	BF1108_1108R_2
BF1108_1108R_2 (9397 750 06073)	19990819	Product data sheet	-	BF1108_1108R_1
BF1108_1108R_1 (9397 750 05899)	19990517	Preliminary specification	-	-

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

12.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

14. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information 2
3	Ordering information
4	Marking 2
5	Limiting values 3
6	Thermal characteristics 3
7	Static characteristics 3
8	Dynamic characteristics 4
9	Package outline 6
10	Abbreviations 8
11	Revision history 8
12	Legal information 9
12.1	Data sheet status 9
12.2	Definitions 9
12.3	Disclaimers
12.4	Trademarks 9
13	Contact information 9
1/	Contents 10

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com