# BLL6H1214-500; BLL6H1214LS-500

**LDMOS L-band radar power transistor** 

Rev. 3 — 5 August 2013

**Product data sheet** 

# 1. Product profile

### 1.1 General description

500 W LDMOS power transistor intended for L-band radar applications in the 1.2 GHz to 1.4 GHz range.

Table 1. Test information

Typical RF performance at  $T_{\rm case}$  = 25 °C;  $t_p$  = 300  $\mu$ s;  $\delta$  = 10 %;  $I_{Dq}$  = 150 mA; in a class-AB production test circuit.

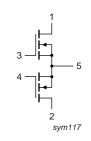
| Test signal | f          | V <sub>DS</sub> | $P_{L}$ | Gp   | $\eta_{D}$ | t <sub>r</sub> | t <sub>f</sub> |
|-------------|------------|-----------------|---------|------|------------|----------------|----------------|
|             | (GHz)      | (V)             | (W)     | (dB) | (%)        | (ns)           | (ns)           |
| pulsed RF   | 1.2 to 1.4 | 50              | 500     | 17   | 50         | 20             | 6              |

### 1.2 Features and benefits

- Easy power control
- Integrated ESD protection
- High flexibility with respect to pulse formats
- Excellent ruggedness
- High efficiency
- Excellent thermal stability
- Designed for broadband operation (1.2 GHz to 1.4 GHz)
- Internally matched for ease of use
- Compliant to Directive 2002/95/EC, regarding restriction of hazardous substances (RoHS)

### 1.3 Applications

 L-band power amplifiers for radar applications in the 1.2 GHz to 1.4 GHz frequency range




# 2. Pinning information

Table 2. Pinning

|         | •                 |                                   |
|---------|-------------------|-----------------------------------|
| Pin     | Description       | Simplified outline Graphic symbol |
| BLL6H12 | 214-500 (SOT539A) |                                   |
| 1       | drain1            |                                   |
| 2       | drain2            | 1 2 1                             |
| 3       | gate1             | 55 3                              |
| 4       | gate2             | 3 4                               |
| 5       | source            | [1]                               |
|         |                   | <b>'</b> ¬                        |
|         |                   | 2                                 |
|         |                   | sym117                            |

| BLL6H1 | 214LS-500 (SOT539B) |            |    |
|--------|---------------------|------------|----|
| 1      | drain1              |            | _  |
| 2      | drain2              |            |    |
| 3      | gate1               |            | Ļ, |
| 4      | gate2               |            | 3  |
| 5      | source              | <u>[1]</u> |    |



# 3. Ordering information

Table 3. Ordering information

\_\_\_\_\_\_

| Type number     | Package |                                                             |         |  |  |
|-----------------|---------|-------------------------------------------------------------|---------|--|--|
|                 | Name    | Description                                                 | Version |  |  |
| BLL6H1214-500   | -       | flanged balanced ceramic package; 2 mounting holes; 4 leads | SOT539A |  |  |
| BLL6H1214LS-500 | -       | earless flanged balanced ceramic package; 4 leads           | SOT539B |  |  |

# 4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol           | Parameter            | Conditions | Min  | Max  | Unit |
|------------------|----------------------|------------|------|------|------|
| $V_{DS}$         | drain-source voltage |            | -    | 100  | V    |
| $V_{GS}$         | gate-source voltage  |            | -0.5 | +13  | V    |
| T <sub>stg</sub> | storage temperature  |            | -65  | +150 | °C   |
| Tj               | junction temperature |            | -    | 200  | °C   |

<sup>[1]</sup> Connected to flange.

# 5. Thermal characteristics

Table 5. Thermal characteristics

| Table 5.             | Thermal characteristics          |                                             |       |      |
|----------------------|----------------------------------|---------------------------------------------|-------|------|
| Symbol               | Parameter                        | Conditions                                  | Тур   | Unit |
| BLL6H12              | 214-500                          |                                             |       |      |
| Z <sub>th(j-c)</sub> | transient thermal impedance from | $T_{case} = 85  ^{\circ}C;  P_{L} = 500  W$ |       |      |
|                      | junction to case                 | $t_p = 100 \ \mu s; \ \delta = 10 \ \%$     | 0.07  | K/W  |
|                      |                                  | $t_p$ = 200 $\mu$ s; $\delta$ = 10 %        | 0.08  | K/W  |
|                      |                                  | $t_p$ = 300 $\mu$ s; $\delta$ = 10 %        | 0.1   | K/W  |
|                      |                                  | $t_p$ = 100 $\mu$ s; $\delta$ = 20 %        | 0.1   | K/W  |
| BLL6H12              | 214LS-500                        |                                             |       |      |
| $Z_{\text{th(j-c)}}$ | transient thermal impedance from | $T_{case}$ = 85 °C; $P_L$ = 500 W           |       |      |
|                      | junction to case                 | $t_p$ = 100 $\mu$ s; $\delta$ = 10 %        | 0.046 | K/W  |
|                      |                                  | $t_p$ = 200 $\mu$ s; $\delta$ = 10 %        | 0.059 | K/W  |
|                      |                                  | $t_p$ = 300 $\mu$ s; $\delta$ = 10 %        | 0.069 | K/W  |
|                      |                                  | $t_p$ = 100 $\mu$ s; $\delta$ = 20 %        | 0.064 | K/W  |

# 6. Characteristics

Table 6. DC characteristics

 $T_i = 25$  °C; per section unless otherwise specified.

| ,                   | •                                |                                                                    |     |     |     |      |
|---------------------|----------------------------------|--------------------------------------------------------------------|-----|-----|-----|------|
| Symbol              | Parameter                        | Conditions                                                         | Min | Тур | Max | Unit |
| $V_{(BR)DSS} \\$    | drain-source breakdown voltage   | $V_{GS} = 0 \text{ V}; I_D = 2.7 \text{ mA}$                       | 100 | -   | -   | V    |
| V <sub>GS(th)</sub> | gate-source threshold voltage    | $V_{DS} = 10 \text{ V}; I_{D} = 270 \text{ mA}$                    | 1.3 | 1.8 | 2.2 | V    |
| I <sub>DSS</sub>    | drain leakage current            | $V_{GS} = 0 \text{ V}; V_{DS} = 50 \text{ V}$                      | -   | -   | 1.4 | μΑ   |
| I <sub>DSX</sub>    | drain cut-off current            | $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$<br>$V_{DS} = 10 \text{ V}$ | 32  | 42  | -   | Α    |
| I <sub>GSS</sub>    | gate leakage current             | $V_{GS} = 11 \text{ V}; V_{DS} = 0 \text{ V}$                      | -   | -   | 140 | nΑ   |
| 9 <sub>fs</sub>     | forward transconductance         | $V_{DS} = 10 \text{ V}; I_{D} = 270 \text{ mA}$                    | 1.7 | 3   | -   | S    |
| R <sub>DS(on)</sub> | drain-source on-state resistance | $V_{GS} = V_{GS(th)} + 3.75 \text{ V};$<br>$I_D = 9.5 \text{ A}$   | -   | 100 | 164 | mΩ   |

Table 7. RF characteristics

Test signal: pulsed RF;  $t_p$  = 300  $\mu$ s;  $\delta$  = 10 %; RF performance at  $V_{DS}$  = 50 V;  $I_{Dq}$  = 150 mA;  $T_{case}$  = 25 °C; unless otherwise specified, in a class-AB production test circuit.

| Symbol              | Parameter                             | Conditions              | Min | Тур | Max | Unit |
|---------------------|---------------------------------------|-------------------------|-----|-----|-----|------|
| $P_L$               | output power                          |                         | 500 | -   | -   | W    |
| $V_{DS}$            | drain-source voltage                  | $P_{L} = 500 \text{ W}$ | -   | -   | 50  | V    |
| Gp                  | power gain                            | $P_{L} = 500 \text{ W}$ | 15  | 17  | -   | dB   |
| $RL_{in}$           | input return loss                     | $P_{L} = 500 \text{ W}$ | -   | -10 | -   | dB   |
| P <sub>L(1dB)</sub> | output power at 1 dB gain compression |                         | -   | 600 | -   | W    |
| $\eta_{D}$          | drain efficiency                      | $P_{L} = 500 \text{ W}$ | 45  | 50  | -   | %    |

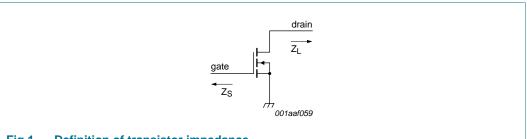
RF characteristics ...continued Table 7.

Test signal: pulsed RF;  $t_p$  = 300  $\mu$ s;  $\delta$  = 10 %; RF performance at  $V_{DS}$  = 50 V;  $I_{Dq}$  = 150 mA;  $T_{\rm case} = 25$  °C; unless otherwise specified, in a class-AB production test circuit.

| Symbol             | Parameter         | Conditions              | Min | Тур | Max | Unit |
|--------------------|-------------------|-------------------------|-----|-----|-----|------|
| $P_{droop(pulse)}$ | pulse droop power | $P_{L} = 500 \text{ W}$ | -   | 0   | 0.3 | dB   |
| t <sub>r</sub>     | rise time         | $P_{L} = 500 \text{ W}$ | -   | 20  | 50  | ns   |
| t <sub>f</sub>     | fall time         | $P_{L} = 500 \text{ W}$ | -   | 6   | 50  | ns   |

### **Test information** 7.

# 7.1 Ruggedness in class-AB operation


The BLL6H1214-500 and BLL6H1214LS-500 are capable of withstanding a load mismatch corresponding to VSWR = 10: 1 through all phases under the following conditions:  $V_{DS}$  = 50 V;  $I_{Da}$  = 150 mA;  $P_L$  = 500 W;  $t_p$  = 300  $\mu$ s;  $\delta$  = 10 %.

# 7.2 Impedance information

Table 8. **Typical impedance** 

Typical values per section unless otherwise specified.

| f     | Z <sub>S</sub> | Z <sub>L</sub> |
|-------|----------------|----------------|
| (GHz) | (Ω)            | $(\Omega)$     |
| 1.2   | 1.268 – j2.623 | 2.987 – j1.664 |
| 1.3   | 2.193 – j2.457 | 2.162 – j1.326 |
| 1.4   | 2.359 – j2.052 | 1.604 – j1.887 |

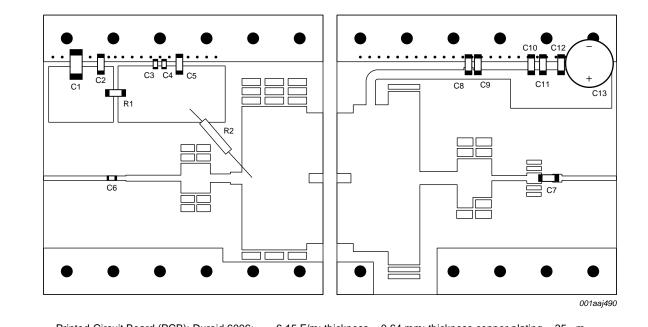


**Definition of transistor impedance** 

### 7.3 Test circuit

Table 9. List of components

For test circuit see Figure 2.

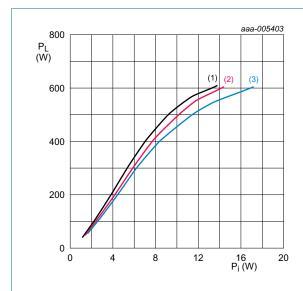

| Component    | Description                       | Value       | Remarks    |
|--------------|-----------------------------------|-------------|------------|
| C1           | multilayer ceramic chip capacitor | 22 μF, 35 V |            |
| C2           | multilayer ceramic chip capacitor | 51 pF       | <u>[1]</u> |
| C3, C4       | multilayer ceramic chip capacitor | 100 pF      | <u>[1]</u> |
| C5, C11, C12 | multilayer ceramic chip capacitor | 1 nf        | <u>[2]</u> |
| C6           | multilayer ceramic chip capacitor | 47 pF       | <u>[1]</u> |
| C7, C8, C10  | multilayer ceramic chip capacitor | 51 pF       | <u>[3]</u> |

BLL6H1214-500\_1214LS-500

**Table 9.** List of components ...continued For test circuit see <u>Figure 2</u>.

| Component | Description                       | Value       | Remarks    |
|-----------|-----------------------------------|-------------|------------|
| C9        | multilayer ceramic chip capacitor | 100 pF      | <u>[3]</u> |
| C13       | electrolytic capacitor            | 10 μF, 63 V |            |
| R1        | SMD resistor                      | 56 Ω        | 0603       |
| R2        | metal film resistor               | 51 Ω        |            |

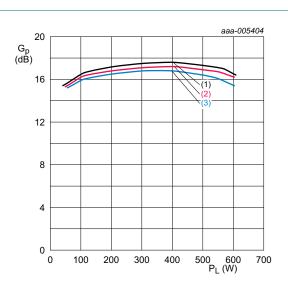
- [1] American Technical Ceramics type 100A or capacitor of same quality.
- [2] American Technical Ceramics type 100B or capacitor of same quality.
- [3] American Technical Ceramics type 800B or capacitor of same quality.




Printed-Circuit Board (PCB): Duroid 6006;  $\epsilon_r$  = 6.15 F/m; thickness = 0.64 mm; thickness copper plating = 35  $\mu$ m. See Table 9 for a list of components.

Fig 2. Component layout for class-AB production test circuit

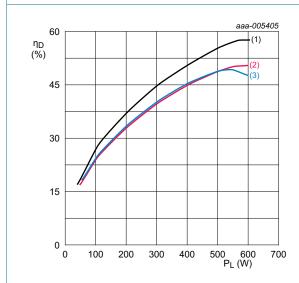
# 7.4 RF performance graphs


# 7.4.1 Performance curves measured with $\delta$ = 10 %, $t_p$ = 300 $\mu$ s and $T_h$ = 25 °C



 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

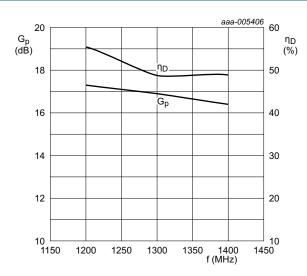
- (1) f = 1200 MHz
- (2) f = 1300 MHz
- (3) f = 1400 MHz


Fig 3. Output power as a function of input power; typical values



 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

- (1) f = 1200 MHz
- (2) f = 1300 MHz
- (3) f = 1400 MHz


Fig 4. Power gain as a function of output power; typical values



 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

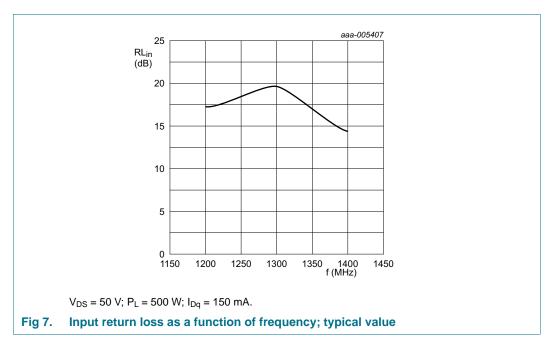
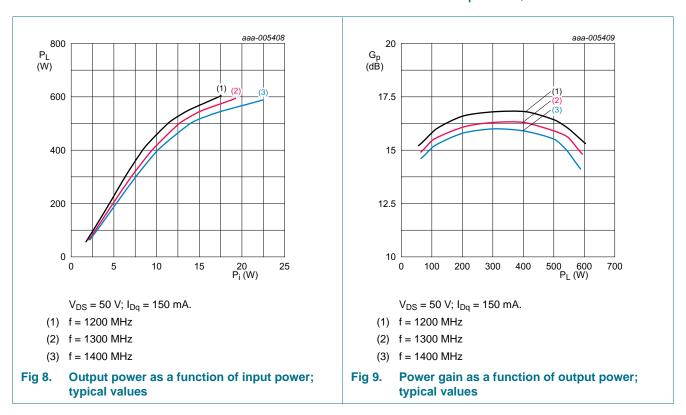

- (1) f = 1200 MHz
- (2) f = 1300 MHz
- (3) f = 1400 MHz

Fig 5. Drain efficiency as a function of output power; typical values



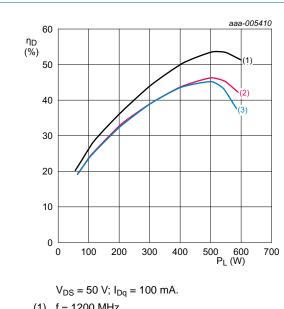
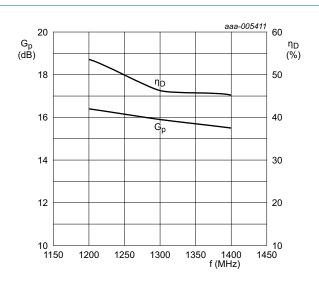


 $V_{DS}$  = 50 V;  $P_L$  = 500 W;  $I_{Dq}$  = 150 mA.

Fig 6. Power gain and drain efficiency as function of frequency; typical values

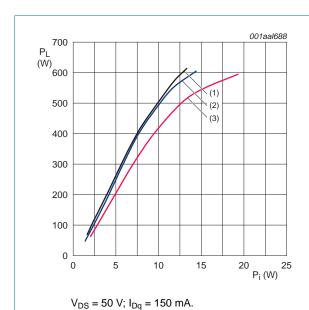



# 7.4.2 Performance curves measured with $\delta$ = 10 %, $t_p$ = 300 $\mu$ s and $T_h$ = 65 °C



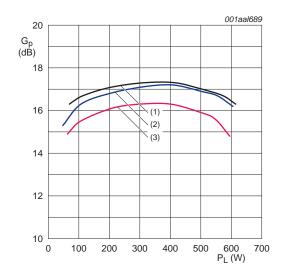


- (1) f = 1200 MHz
- (2) f = 1300 MHz
- (3) f = 1400 MHz


Fig 10. Drain efficiency as a function of output power; typical values



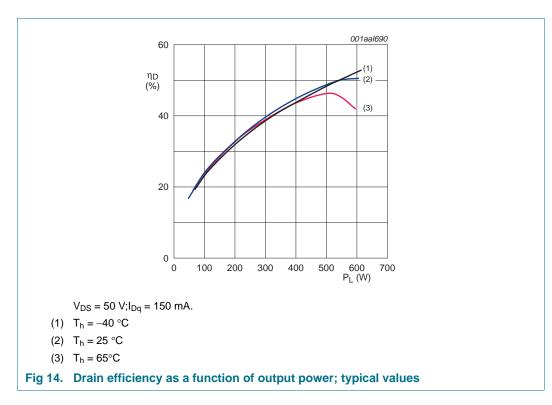
 $V_{DS} = 50 \text{ V}; P_L = 500 \text{ W}; I_{Dq} = 100 \text{ mA}.$ 


Fig 11. Power gain and drain efficiency as function of frequency; typical values

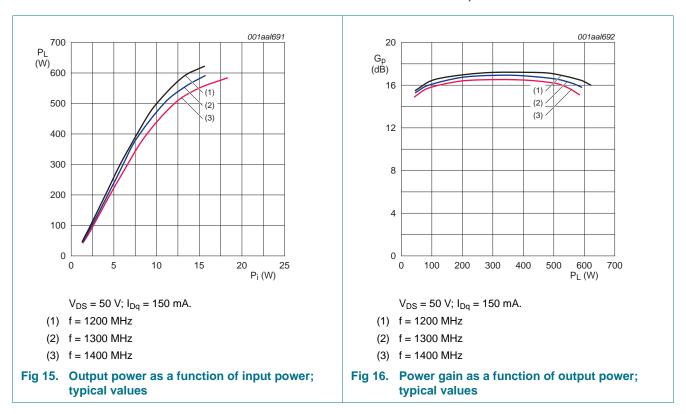
# 7.4.3 Performance curves measured with $\delta$ = 10 %, $t_p$ = 300 $\mu$ s and f = 1300 MHz



- (1)  $T_h = -40 \, ^{\circ}C$
- (2)  $T_h = 25 \, ^{\circ}C$
- (3)  $T_h = 65^{\circ}C$


Fig 12. Output power as a function of input power; typical values




 $V_{DS} = 50 \text{ V;} I_{Dq} = 150 \text{ mA}.$ 

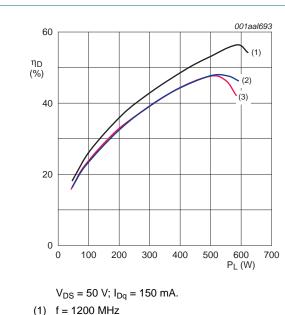
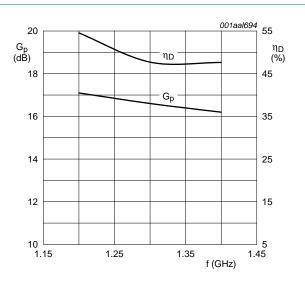

- (1)  $T_h = -40 \, ^{\circ}C$
- (2)  $T_h = 25 \, ^{\circ}C$
- (3)  $T_h = 65^{\circ}C$

Fig 13. Power gain as a function of output power; typical values

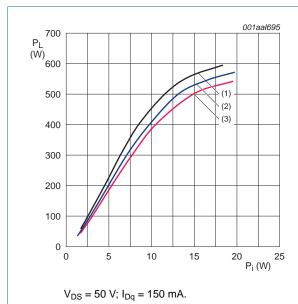



# 7.4.4 Performance curves measured with $\delta$ = 20 %, $t_p$ = 500 $\mu$ s and $T_h$ = 25 °C



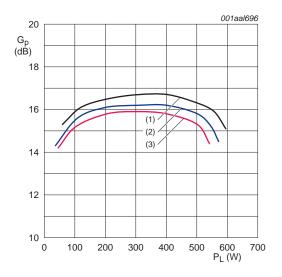


- (2) f = 1300 MHz
- (3) f = 1400 MHz


Fig 17. Drain efficiency as a function of output power; typical values



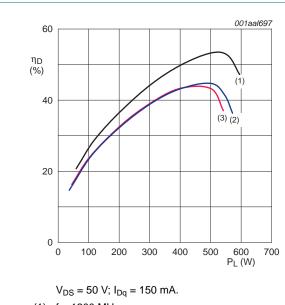
 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 


Fig 18. Power gain and drain efficiency as function of frequency; typical values

# 7.4.5 Performance curves measured with $\delta$ = 20 %, $t_p$ = 500 $\mu$ s and $T_h$ = 65 °C



- (1) f = 1200 MHz
- (2) f = 1300 MHz
- (3) f = 1400 MHz


Fig 19. Output power as a function of input power; typical values



 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

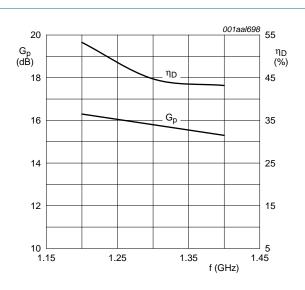
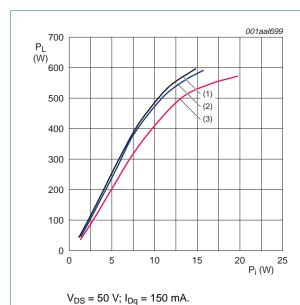

- (1) f = 1200 MHz
- (2) f = 1300 MHz
- (3) f = 1400 MHz

Fig 20. Power gain as a function of output power; typical values



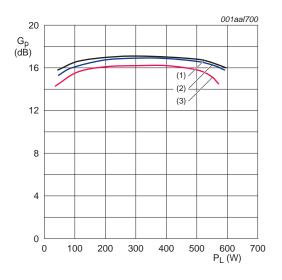
- (1) f = 1200 MHz
- (2) f = 1300 MHz
- (3) f = 1400 MHz


Fig 21. Drain efficiency as a function of output power; typical values



 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

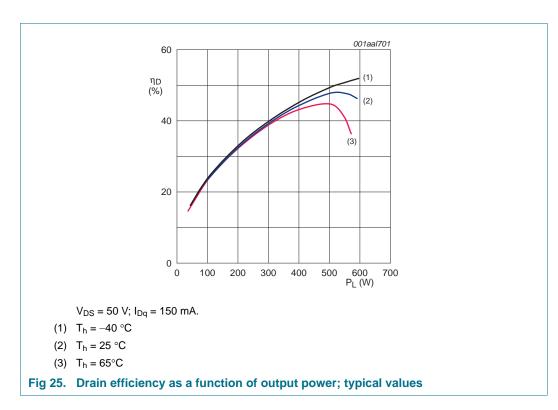
Fig 22. Power gain and drain efficiency as function of frequency; typical values


# 7.4.6 Performance curves measured with $\delta$ = 20 %, $t_p$ = 500 $\mu$ s and f = 1300 MHz

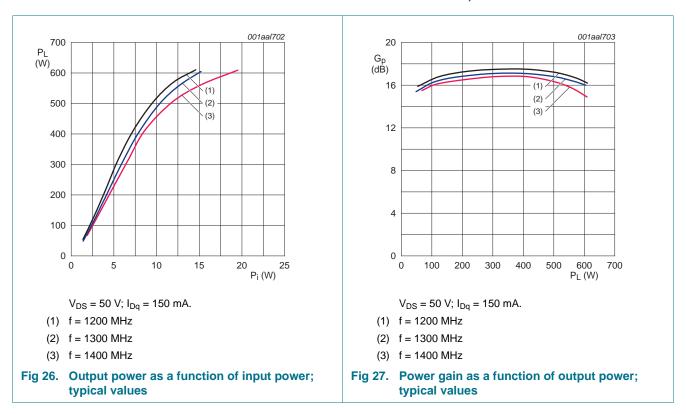




- (2) T<sub>h</sub> = 25 °C
- (3)  $T_h = 65^{\circ}C$


Fig 23. Output power as a function of input power; typical values




 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

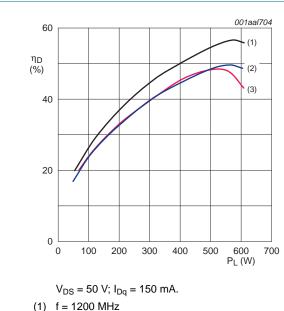
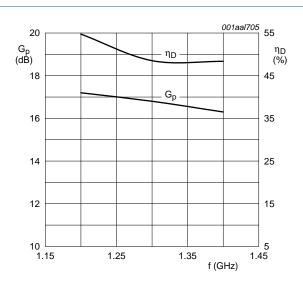

- (1)  $T_h = -40 \, ^{\circ}C$
- (2)  $T_h = 25 \, ^{\circ}C$
- (3)  $T_h = 65^{\circ}C$

Fig 24. Power gain as a function of output power; typical values

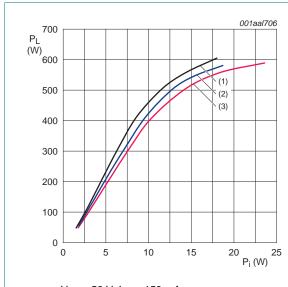



# 7.4.7 Performance curves measured with $\delta$ = 10 %, $t_p$ = 1 ms and $T_h$ = 25 °C





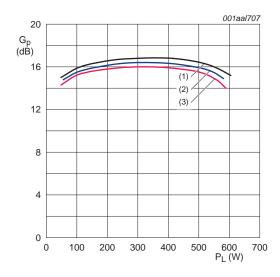
- (2) f = 1300 MHz
- (3) f = 1400 MHz


Fig 28. Drain efficiency as a function of output power; typical values



 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

Fig 29. Power gain and drain efficiency as function of frequency; typical values

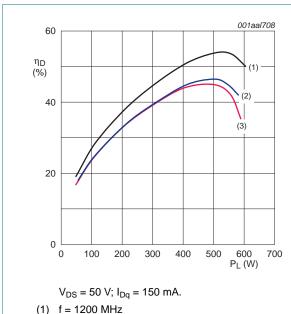

# 7.4.8 Performance curves measured with $\delta$ = 10 %, $t_p$ = 1 ms and $T_h$ = 65 °C



 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

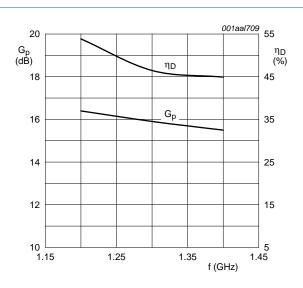
- (1) f = 1200 MHz
- (2) f = 1300 MHz
- (3) f = 1400 MHz

Fig 30. Output power as a function of input power; typical values




 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

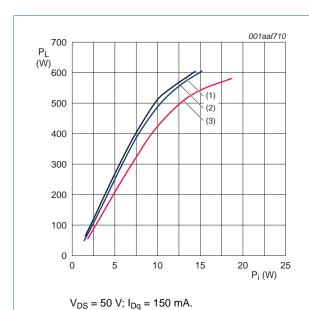
- (1) f = 1200 MHz
- (2) f = 1300 MHz
- (3) f = 1400 MHz


Fig 31. Power gain as a function of output power; typical values

BLL6H1214-500\_1214LS-500

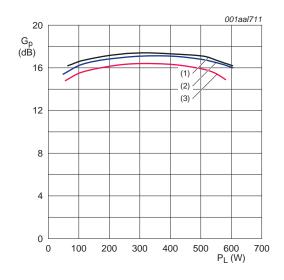


- (2) f = 1300 MHz
- (3) f = 1400 MHz


Fig 32. Drain efficiency as a function of output power; typical values



 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

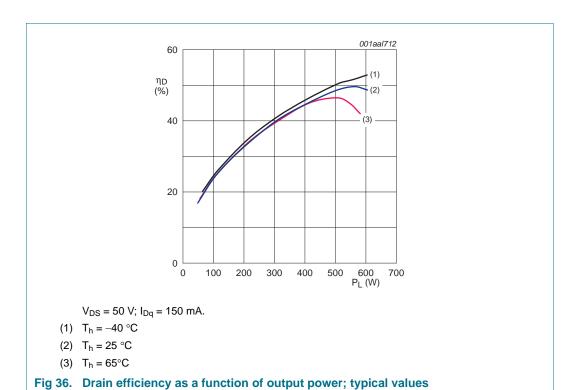

Fig 33. Power gain and drain efficiency as function of frequency; typical values

# 7.4.9 Performance curves measured with $\delta$ = 10 %, $t_p$ = 1 ms and f = 1300 MHz



- (1)  $T_h = -40 \, ^{\circ}C$
- (2)  $T_h = 25 \, ^{\circ}C$
- (3)  $T_h = 65^{\circ}C$

Fig 34. Output power as a function of input power; typical values




 $V_{DS} = 50 \text{ V}; I_{Dq} = 150 \text{ mA}.$ 

- (1)  $T_h = -40 \, ^{\circ}C$
- (2)  $T_h = 25 \, ^{\circ}C$
- (3)  $T_h = 65^{\circ}C$

Fig 35. Power gain as a function of output power; typical values

BLL6H1214-500\_1214LS-500



# 8. Package outline

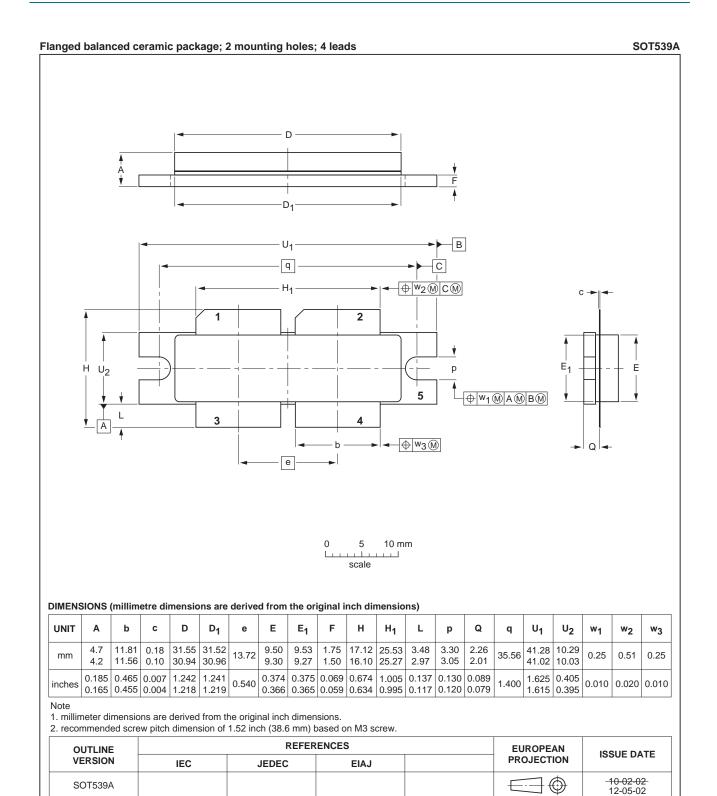



Fig 37. Package outline SOT539A

BLL6H1214-500\_1214LS-500

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

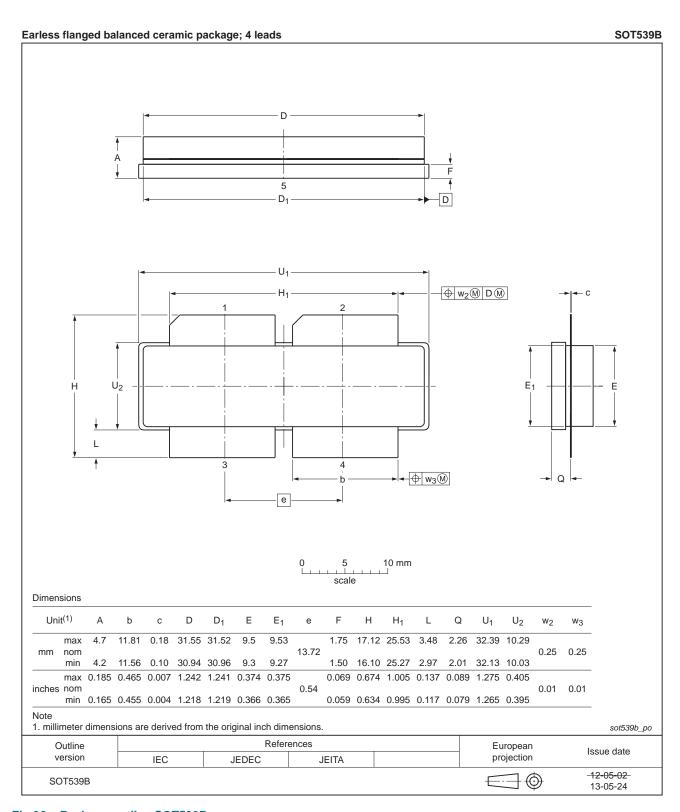



Fig 38. Package outline SOT539B

BLL6H1214-500\_1214LS-500

# 9. Handling information

### **CAUTION**



This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

# 10. Abbreviations

Table 10. Abbreviations

| Acronym | Description                                  |
|---------|----------------------------------------------|
| ESD     | ElectroStatic Discharge                      |
| L-band  | Long wave Band                               |
| LDMOS   | Laterally Diffused Metal-Oxide Semiconductor |
| SMD     | Surface Mounted Device                       |
| VSWR    | Voltage Standing-Wave Ratio                  |

# 11. Revision history

Table 11. Revision history

| Document ID                  | Release date                                                                                             | Data sheet status         | Change notice | Supersedes        |  |
|------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------|---------------|-------------------|--|
| BLL6H1214-500_1214LS-500 v.3 | 20130805                                                                                                 | Product data sheet        | -             | BLL6H1214-500 v.2 |  |
| Modifications:               | <ul> <li>This document now describes both the BLL6H1214-500 and<br/>BLL6H1214LS-500 products.</li> </ul> |                           |               |                   |  |
|                              | <ul> <li><u>Table 1 on page 1</u>: 'mode of operation' changed to 'test signal'.</li> </ul>              |                           |               |                   |  |
|                              | <ul> <li><u>Table 4 on page 2</u>: removed row 'I<sub>D</sub>'.</li> </ul>                               |                           |               |                   |  |
|                              | <ul> <li><u>Table 7 on page 3</u>: 'mode of operation' changed to 'test signal'.</li> </ul>              |                           |               |                   |  |
|                              | <ul> <li>Section 7 on page 4: moved several sections to this section.</li> </ul>                         |                           |               |                   |  |
|                              | <ul> <li><u>Section 7.4 on page 6</u>: updated figure notes.</li> </ul>                                  |                           |               |                   |  |
|                              | <ul> <li>Section 7.4</li> </ul>                                                                          | .1 on page 6: updated gr  | aphs.         |                   |  |
|                              | <ul> <li>Section 7.4.2 on page 7: updated graphs.</li> </ul>                                             |                           |               |                   |  |
|                              | • Figure 38 c                                                                                            | on page 17: updated figur | e.            |                   |  |
| BLL6H1214-500 v.2            | 20100401                                                                                                 | Product data sheet        | -             | BLL6H1214-500 v.1 |  |
| BLL6H1214-500 v.1            | 20090120                                                                                                 | Objective data sheet      | -             | -                 |  |

# 12. Legal information

### 12.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

### 12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

### 12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BLL6H1214-500\_1214LS-500

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

# BLL6H1214-500; BLL6H1214LS-500

### LDMOS L-band radar power transistor

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

### 12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 13. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

# 14. Contents

| 1     | Product profile                                                                                        |
|-------|--------------------------------------------------------------------------------------------------------|
| 1.1   | General description 1                                                                                  |
| 1.2   | Features and benefits                                                                                  |
| 1.3   | Applications                                                                                           |
| 2     | Pinning information                                                                                    |
| 3     | Ordering information 2                                                                                 |
| 4     | Limiting values                                                                                        |
| 5     | Thermal characteristics 3                                                                              |
| 6     | Characteristics                                                                                        |
| 7     | Test information 4                                                                                     |
| 7.1   | Ruggedness in class-AB operation 4                                                                     |
| 7.2   | Impedance information 4                                                                                |
| 7.3   | Test circuit4                                                                                          |
| 7.4   | RF performance graphs 6                                                                                |
| 7.4.1 | Performance curves measured with                                                                       |
|       | $\delta$ = 10 %, $t_p$ = 300 $\mu s$ and $T_h$ = 25 °C $\dots$ $\qquad \qquad 6$                       |
| 7.4.2 | Performance curves measured with                                                                       |
|       | $\delta$ = 10 %, t <sub>p</sub> = 300 $\mu$ s and T <sub>h</sub> = 65 °C 7                             |
| 7.4.3 | Performance curves measured with                                                                       |
| 7.4.4 | $\delta$ = 10 %, $t_p$ = 300 $\mu$ s and $f$ = 1300 MHz 8                                              |
| 7.4.4 | Performance curves measured with                                                                       |
| 7.4.5 | $\delta$ = 20 %, t <sub>p</sub> = 500 μs and T <sub>h</sub> = 25 °C 9 Performance curves measured with |
| 7.4.5 | $\delta$ = 20 %, $t_D$ = 500 $\mu$ s and $T_h$ = 65 °C 10                                              |
| 7.4.6 | Performance curves measured with                                                                       |
| 7.4.0 | $\delta$ = 20 %, t <sub>p</sub> = 500 µs and f = 1300 MHz 11                                           |
| 7.4.7 | Performance curves measured with                                                                       |
|       | $\delta$ = 10 %, t <sub>p</sub> = 1 ms and T <sub>h</sub> = 25 °C 12                                   |
| 7.4.8 | Performance curves measured with                                                                       |
|       | $\delta$ = 10 %, t <sub>p</sub> = 1 ms and T <sub>h</sub> = 65 °C                                      |
| 7.4.9 | Performance curves measured with                                                                       |
|       | $\delta$ = 10 %, $t_p$ = 1 ms and f = 1300 MHz $\dots$ . 14                                            |
| 8     | Package outline                                                                                        |
| 9     | Handling information 18                                                                                |
| 10    | Abbreviations                                                                                          |
| 11    | Revision history                                                                                       |
| 12    | Legal information                                                                                      |
| 12.1  | Data sheet status                                                                                      |
| 12.2  | Definitions                                                                                            |
| 12.3  | Disclaimers                                                                                            |
| 12.4  | Trademarks                                                                                             |
| 13    | Contact information 20                                                                                 |
| 14    | Contents                                                                                               |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

# AMEYA360 Components Supply Platform

# **Authorized Distribution Brand:**

























# Website:

Welcome to visit www.ameya360.com

# Contact Us:

# Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

# > Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

# Customer Service :

Email service@ameya360.com

# Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com