Small Signal MOSFET

20 V / -8.0 V, Complementary, +0.63 A / -0.775 A, SC-88

Features

- Complementary N and P Channel Device
- Leading -8.0 V Trench for Low R_{DS(on)} Performance
- ESD Protected Gate ESD Rating: Class 1
- SC-88 Package for Small Footprint (2 x 2 mm)
- Pb-Free Packages are Available

Applications

- DC-DC Conversion
- Load/Power Switching
- Single or Dual Cell Li-Ion Battery Supplied Devices
- Cell Phones, MP3s, Digital Cameras, PDAs

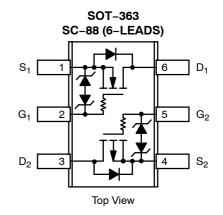
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage	N-Ch	V_{DSS}	20	V	
				-8.0	
Gate-to-Source Voltage		N-Ch	V_{GS}	±12	V
		P-Ch		±8.0	
Continuous Drain Current	N-Ch	T _A = 25°C	I _D	0.63	Α
– Steady State (Based on R _{θJA})		T _A = 85°C		0.46	
(Dased Off High	P-Ch	T _A = 25°C		-0.775	
		T _A = 85°C		-0.558	
Continuous Drain Current	N-Ch	T _A = 25°C		0.91	
– Steady State (Based on R _{ө.ш})		T _A = 85°C		0.65	
(Based on Higge)	P-Ch	T _A = 25°C		-1.1	
		T _A = 85°C		-0.8	
Pulsed Drain Current		tp ≤ 10 μs	I_{DM}	±1.2	Α
	Power Dissipation - Steady State			0.27	W
(Based on $R_{\theta JA}$)		T _A = 85°C		0.14	
Power Dissipation - Steady	T _A = 25°C		0.55		
(Based on R _{θJL})	T _A = 85°C		0.29		
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diod	N-Ch	I _S	0.63	Α	
	P-Ch		-0.775		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	ô

THERMAL RESISTANCE RATINGS (Note 1)

Junction-to-Ambient	Тур	$R_{\theta JA}$	400	°C/W
Steady State	Max		460	
Junction-to-Lead (Drain)	Тур	$R_{\theta JL}$	194	
Steady State	Max		226	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Surface mounted on FR4 board using 1 oz Cu area = 0.9523 in sq.

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max
N-Ch 20 V	0.29 Ω @ 4.5 V	
	0.36 Ω @ 2.5 V	0.63 A
	0.22 Ω @ -4.5 V	
P-Ch -8.0 V	0.32 Ω @ -2.5 V	-0.775 A
	0.51 Ω @ –1.8 V	

MARKING DIAGRAM & PIN ASSIGNMENT

TC = Device Code = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS	Cyzc.	,.				.,,,,	ших	- Cinto
	Lv			1 050 A				
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N P	$V_{GS} = 0 V$	I _D = 250 μA	20	27		V
Drain-to-Source Breakdown	\/	N		$I_D = -250 \mu\text{A}$	-8.0	-10.5 22		mV/ °C
Voltage Temperature Coeffi-	V _{(BR)DSS}							IIIV/ C
cient		Р				-6.0		
Zero Gate Voltage Drain Cur-	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 16 V	T 05 °C			1.0	μΑ
rent		Р	$V_{GS} = 0 \text{ V}, V_{DS} = -6.4 \text{ V}$	T _J = 25 °C			1.0	
Gate-to-Source	I _{GSS}	N	V _{DS} = 0 V	$V_{GS} = \pm 12 \text{ V}$			10	μΑ
Leakage Current		Р	VDS = 0 V	$V_{GS} = \pm 8.0$			10	
ON CHARACTERISTICS (Note 2	2)							
Gate Threshold Voltage	V _{GS(TH)}	N	V _{GS} = V _{DS}	I _D = 250 μA	0.6	0.92	1.5	V
		Р	VGS = VDS	$I_D = -250 \mu A$	-0.45	-0.83	-1.0	
Gate Threshold	V _{GS(TH)} /	N				-2.1		-mV/ °C
Temperature Coefficient	ТЈ	Р				2.2		
Drain-to-Source On Resist-	R _{DS(on)}	N	$V_{GS} = 4.5 \text{ V I}_{D} = 0$	D.63 A		0.29	0.375	Ω
ance		Р	$V_{GS} = -4.5 \text{ V}, I_D = -0.57 \text{ A}$			0.22	0.30	
		N	$V_{GS} = 2.5 \text{ V}, I_D = 0$	0.40 A		0.36	0.445	
		Р	$V_{GS} = -2.5 \text{ V}, I_D = -2.5 \text{ V}$	-0.48 A		0.32	0.46	
		Р	$V_{GS} = -1.8 \text{ V}, I_D = -0.20 \text{ A}$			0.51	0.90	
Forward Transconductance	g _F s	N	$V_{DS} = 4.0 \text{ V } I_{D} = 0$	0.63 A		2.0		S
		Р	$V_{DS} = -4.0 \text{ V}, I_{D} = -4.0 \text{ V}$	-0.57 A		2.0		
CHARGES AND CAPACITANCE	S							
Input Capacitance	C _{ISS}	N		V _{DS} = 20 V		33	46	pF
		Р		$V_{DS} = -8.0V$		160	225	
Output Capacitance	C _{OSS}	N	f 4 MIL 1/ 01/	V _{DS} = 20 V		13	22	
		Р	f = 1 MHz, V _{GS} = 0 V	$V_{DS} = -8.0 \text{ V}$		38	55	
Reverse Transfer Capacitance	C _{RSS}	N		V _{DS} = 20 V		2.8	5.0	
		Р		$V_{DS} = -8.0 \text{ V}$		28	40	
Total Gate Charge	Q _{G(TOT)}	N	V _{GS} = 4.5 V, V _{DS} = 10 V	V, I _D = 0.7 A		1.3	3.0	nC
	,	Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0$			2.2	4.0	1
Threshold Gate Charge	Q _{G(TH)}	N	V _{GS} = 4.5 V, V _{DS} = 10 \	V, I _D = 0.7 A		0.1		1
	, ,	Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0$	$V, I_D = -0.6 A$		0.1		
Gate-to-Source Charge	Q_{GS}	N	V _{GS} = 4.5 V, V _{DS} = 10 V	V, I _D = 0.7 A		0.2		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0$	$V_1 I_D = -0.6 A$		0.5		
Gate-to-Drain Charge	Q_{GD}	N	V _{GS} = 4.5 V, V _{DS} = 10 V			0.4		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0$			0.5		
SWITCHING CHARACTERISTIC	S (Note 3)							
Turn-On Delay Time	t _{d(ON)}	N				0.083		μs
Rise Time	t _r]	$V_{GS} = 4.5 \text{ V}, V_{DD} = I_{D} = 0.5 \text{ A}, R_{G} = 0.5 \text{ A}$	= 10 V,		0.227		
Turn-Off Delay Time	t _{d(OFF)}	1	$I_D = 0.5 A, R_G =$	20 Ω		0.786		1
Fall Time	`t _f	1				0.506		1
Turn-On Delay Time	t _{d(ON)}	Р				0.013		1
Rise Time	t _r	1	$V_{GS} = -4.5 \text{ V}, V_{DD} =$	= -4.0 V,		0.023		1
Turn-Off Delay Time	t _{d(OFF)}]	$I_D = -0.5 \text{ A}, R_G = 8.0 \Omega$			0.050		
Fall Time	`t _f					0.036		<u> </u>
DRAIN-SOURCE DIODE CHAR	ACTERISTIC	cs						
Forward Diode Voltage	V_{SD}	N	V 0.V.T 0500	I _S = 0.23 A		0.76	1.1	V
-		Р	$V_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C}$	I _S = -0.23 A		0.76	1.1	1
		N	V 0V T 10500	I _S = 0.23 A		0.63		1
		Р	$V_{GS} = 0 \text{ V}, T_{J} = 125^{\circ}\text{C}$	$I_S = -0.23 \text{ A}$		0.63		1
Reverse Recovery Time	t _{RR}	N	V _{GS} = 0 V,	I _S = 0.23 A		0.410		μs
-		Р	$d_{IS}/d_t = 90 \text{ A/}\mu\text{s}$	I _S = -0.23 A		0.078		1
			•					

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL N-CHANNEL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)

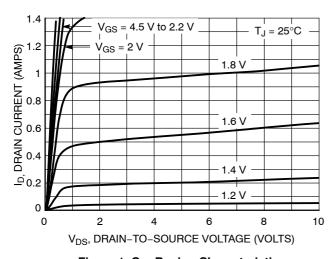


Figure 1. On-Region Characteristics

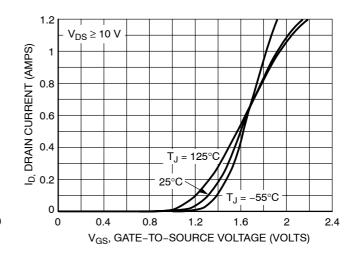


Figure 2. Transfer Characteristics

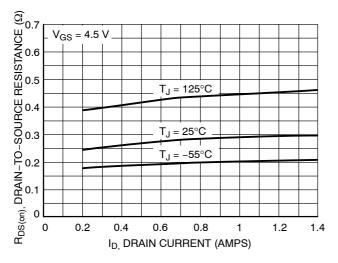


Figure 3. On-Resistance vs. Drain Current and Temperature

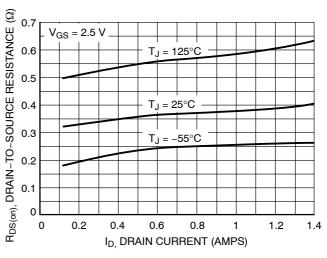


Figure 4. On-Resistance vs. Drain Current and Temperature

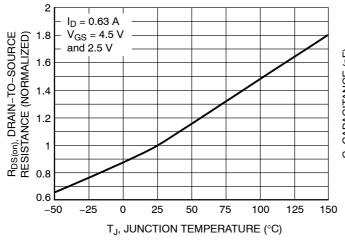


Figure 5. On–Resistance Variation with Temperature

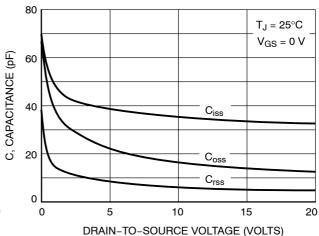


Figure 6. Capacitance Variation

TYPICAL N-CHANNEL PERFORMANCE CURVES ($T_J = 25$ °C unless otherwise noted)

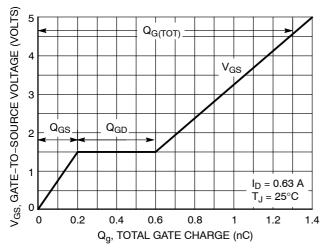


Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

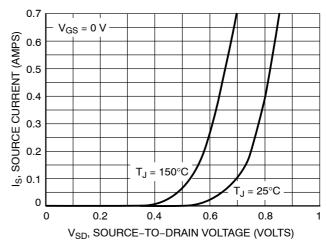


Figure 8. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

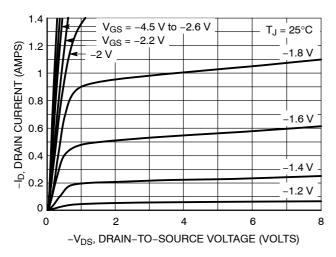


Figure 9. On-Region Characteristics

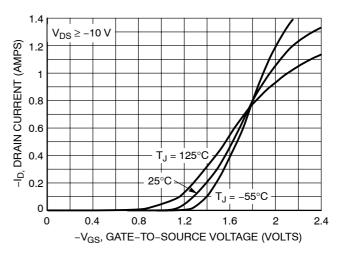


Figure 10. Transfer Characteristics

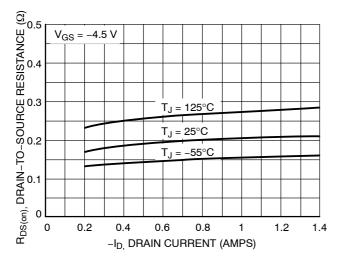


Figure 11. On-Resistance vs. Drain Current and Temperature

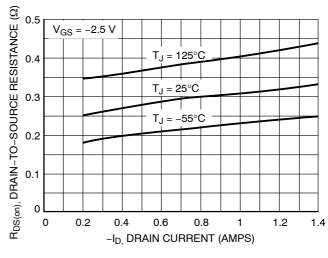


Figure 12. On-Resistance vs. Drain Current and Temperature

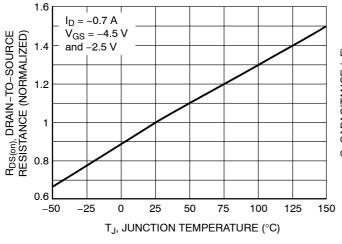


Figure 13. On–Resistance Variation with Temperature

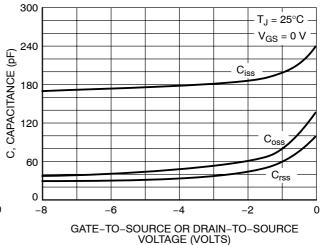


Figure 14. Capacitance Variation

TYPICAL P-CHANNEL PERFORMANCE CURVES ($T_J = 25$ °C unless otherwise noted)

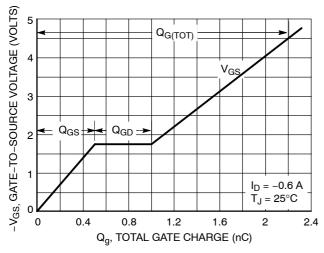
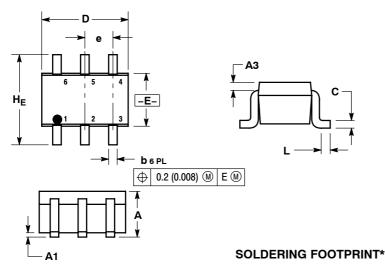


Figure 15. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 16. Diode Forward Voltage vs. Current


ORDERING INFORMATION

Device	Package	Shipping [†]
NTJD4105CT1	SOT-363	3000 / Tape & Reel
NTJD4105CT1G	SOT-363 (Pb-Free)	3000 / Tape & Reel
NTJD4105CT2	SOT-363	3000 / Tape & Reel
NTJD4105CT2G	SOT-363 (Pb-Free)	3000 / Tape & Reel
NTJD4105CT4	SOT-363	10,000 / Tape & Reel
NTJD4105CT4G	SOT-363 (Pb-Free)	10,000 / Tape & Reel

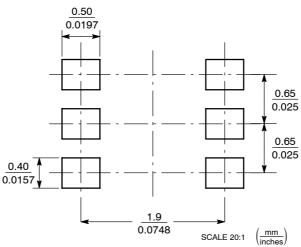
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE W**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- 419B-01 OBSOLETE, NEW STANDARD 419B-02.


	MIL	LIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.95	1.10	0.031	0.037	0.043	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
АЗ		0.20 RE	F	0.008 REF			
b	0.10	0.21	0.30	0.004	0.008	0.012	
С	0.10	0.14	0.25	0.004	0.005	0.010	
D	1.80	2.00	2.20	0.070	0.078	0.086	
Е	1.15 1.25		1.35	0.045	0.049	0.053	
е		0.65 BS	С	0.026 BSC			
L	0.10 0.20		0.30	0.004	0.008	0.012	
He	2 00	2 10	2 20	0.078	0.082	0.086	

STYLE 26:

- PIN 1. SOURCE 1 2. GATE 1

 - 3. DRAIN 2 4. SOURCE 2

 - 5. GATE 2 6. DRAIN 1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and ware registered traderlanks of semiconduction. Components industries, EC (SCILLC) solicit eservices the right to finate changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specificalized so vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com