74LVCV2G66

Overvoltage tolerant bilateral switch Rev. 5 — 29 March 2013

Product data sheet

General description 1.

The 74LVCV2G66 is a low-power, low-voltage, high-speed Si-gate CMOS device.

The 74LVCV2G66 provides two single pole single throw analog or digital switches. Each switch includes an overvoltage tolerant input/output terminal (pin nZ), an output/input terminal (pin nY) and low-power active HIGH enable input (pin nE).

The overvoltage tolerant switch terminals allow the switching of signals in excess of V_{CC} . The low-power enable input eliminates the necessity of using current limiting resistors in portable applications when using control logic signals much lower than V_{CC}. These inputs are also overvoltage tolerant.

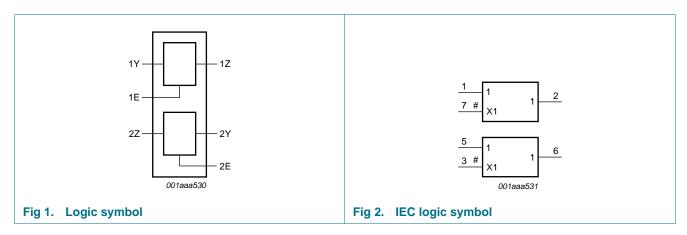
Features and benefits 2.

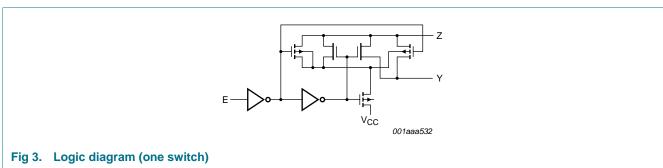
- Wide supply voltage range from 2.3 V to 5.5 V
- Ultra low-power operation
- Very low ON resistance:
 - 8.0 Ω (typical) at $V_{CC} = 2.7 \text{ V}$
 - 7.5 Ω (typical) at V_{CC} = 3.3 V
 - 7.3 Ω (typical) at $V_{CC} = 5.0 \text{ V}$.
- 5 V tolerant input for interfacing with 5 V logic
- High noise immunity
- Switch handling capability of 32 mA
- CMOS low-power consumption
- Latch-up performance exceeds 250 mA
- Incorporates overvoltage tolerant analog switch technology
- Switch accepts voltages up to 5.5 V independent of V_{CC}
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information

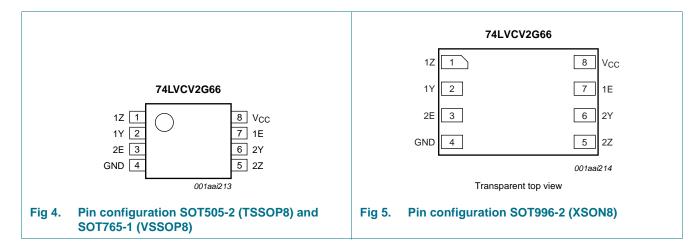
Type number	Package								
	Description	Version							
74LVCV2G66DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2					
74LVCV2G66DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1					
74LVCV2G66GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $3\times2\times0.5~\text{mm}$	SOT996-2					


4. Marking


Table 2. Marking codes

Type number	Marking code ^[1]
74LVCV2G66DP	Y66
74LVCV2G66DC	Y66
74LVCV2G66GD	Y66

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
1Y, 2Y	2, 6	independent input or output
1Z, 2Z	1, 5	independent input or output (overvoltage tolerance)
GND	4	ground (0 V)
1E, 2E	7, 3	enable input (active HIGH)
V _{CC}	8	supply voltage

7. Functional description

Table 4: Function table[1]

Input nE	Switch
L	OFF-state
Н	ON-state

^[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > 6.5 \text{ V}$	-50	-	mA
I _{SK}	switch clamping current	$V_I < -0.5 \text{ V or } V_I > 6.5 \text{ V}$	-	±50	mA
V_{SW}	switch voltage	enable and disable mode	-0.5	+6.5	V
I _{SW}	switch current	V_{SW} > -0.5 V or V_{SW} < 6.5 V	-	±50	mA
I _{CC}	supply current		-	100	mA
I_{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	[2] _	250	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		2.3	-	5.5	V
VI	input voltage		0	-	5.5	V
V_{SW}	switch voltage	enable and disable mode	<u>[1]</u> 0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	[2] _	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$	[2] _	-	10	ns/V

^[1] To avoid sinking GND current from terminal nZ when switch current flows in terminal nY, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no GND current will flow from terminal nY. In this case, there is no limit for the voltage drop across the switch.

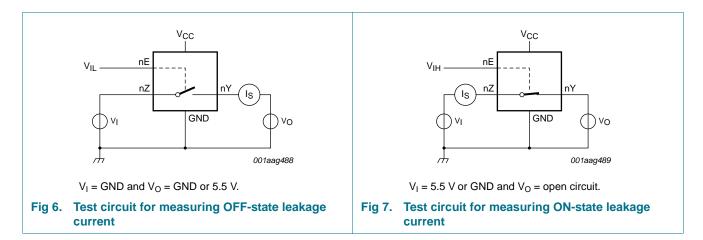
^[2] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K. For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K. For XSON8 package: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

^[2] Applies to control signal levels.

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).


Symbol	Parameter	Conditions		-40 °	°C to +8	5 ℃	-40 °C to	Unit	
				Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level	V _{CC} = 2.3 V to 2.7 V		0.6V _{CC}	-	-	0.6V _{CC}	-	V
input voltage	V _{CC} = 3.0 V to 3.6 V		2.0	-	-	2.0	-	V	
		V _{CC} = 4.5 V to 5.5 V		$0.55V_{CC}$	-	-	$0.55V_{CC}$	-	V
V_{IL}	LOW-level	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	-	$0.1V_{CC}$	-	$0.1V_{CC}$	V
	input voltage	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	0.5	-	0.5	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-	-	$0.15V_{CC}$	-	$0.15V_{CC}$	V
l _l	input leakage current	pin nE; $V_I = 5.5 \text{ V or GND}$; $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	[2]	-	±0.1	±5	-	±5	μΑ
I _{S(OFF)}	OFF-state leakage current	V _{CC} = 2.3 V to 5.5 V; see <u>Figure 6</u>	[2][3]	-	±0.1	±10	-	±10	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 2.3 \text{ V to } 5.5 \text{ V; see } \frac{\text{Figure } 7}{\text{ Figure } 7}$	[2][3]	-	±0.1	±10	-	±10	μΑ
I _{CC}	supply current	V_I = 5.5 V or GND; V_{SW} = GND or V_{CC} ; V_{CC} = 2.3 V to 5.5 V	[2]	-	0.1	10	-	40	μΑ
ΔI_{CC}	additional supply current	pin nE; $V_I = V_{CC} - 0.6 \text{ V}$; $V_{SW} = \text{GND or } V_{CC}$; $V_{CC} = 3.0 \text{ V to } 5.5 \text{ V}$	[2]	-	0.1	5	-	50	μΑ
Cı	input capacitance			-	2.5	-	-	-	pF
$C_{S(OFF)}$	OFF-state capacitance			-	8.0	-	-	-	pF
C _{S(ON)}	ON-state capacitance			-	16	-	-	-	pF

^[1] All typical values are measured at T_{amb} = 25 °C.

^[2] These typical values are measured at V_{CC} = 3.3 V.

^[3] For overvoltage signals ($V_{SW} > V_{CC}$) the condition $V_Y < V_Z$ must be observed.

10.1 Test circuits

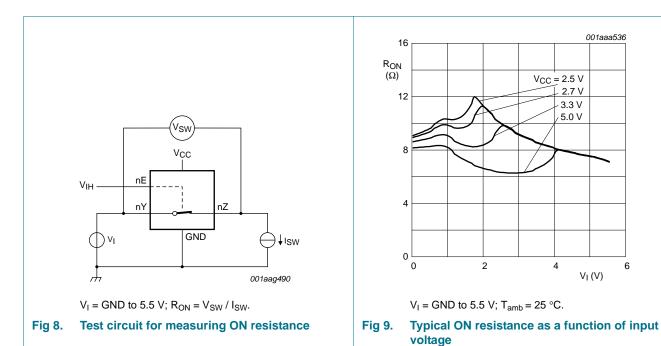
10.2 ON resistance

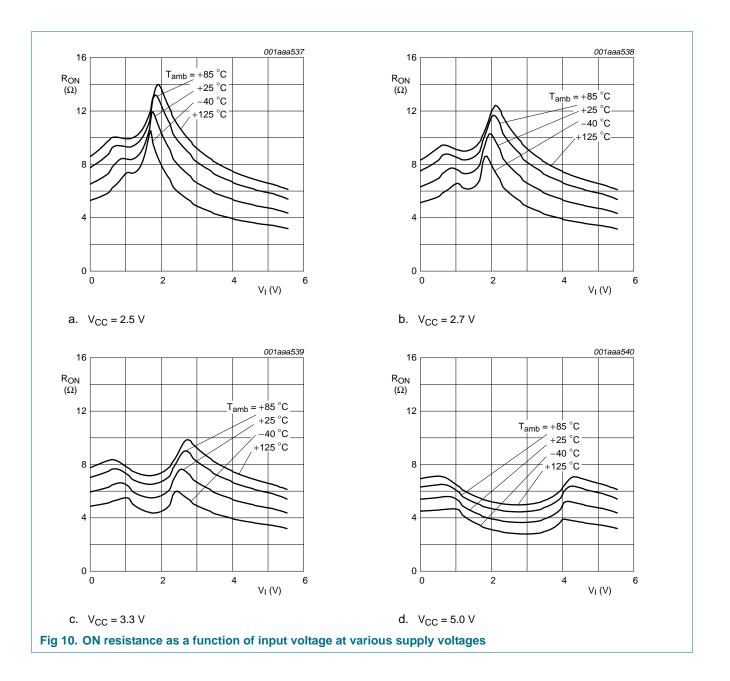
Table 8. Resistance R_{ON}

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 9 and Figure 10.

Symbol	Parameter	Conditions		10 °C to +8	35 °C	-40 °C to	+125 °C	Unit
				n Typ[1]	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	$V_{SW} = GND \text{ to } V_{CC}; V_I = V_{IH};$ see Figure 8						
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	13	30	-	30	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	10	25	-	25	Ω
		I_{SW} = 24 mA; V_{CC} = 3.0 V to 3.6 V	-	8.3	20	-	20	Ω
		$I_{SW} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	7.4	15	-	15	Ω
R _{ON(rail)}	ON resistance (rail)	$V_{SW} = GND; V_I = V_{IH}; see Figure 8$						
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	8.5	20	-	20	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	8.0	18	-	18	Ω
		I_{SW} = 24 mA; V_{CC} = 3.0 V to 3.6 V	-	7.5	15	-	15	Ω
		$I_{SW} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	7.3	10	-	10	Ω
		$V_{SW} = V_{CC}; V_I = V_{IH}$						
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	8.5	20	-	20	Ω
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	7.2	18	-	18	Ω
		I_{SW} = 24 mA; V_{CC} = 3.0 V to 3.6 V	-	6.5	15	-	15	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	5.7	10	-	10	Ω
R _{ON(flat)}	ON resistance	$V_{SW} = GND$ to V_{CC} ; $V_I = V_{IH}$	[2]					
	(flatness)	$I_{SW} = 8 \text{ mA}; V_{CC} = 2.5 \text{ V}$	-	17	-	-	-	Ω
		I_{SW} = 12 mA; V_{CC} = 2.7 V	-	10	-	-	-	Ω
		$I_{SW} = 24 \text{ mA}; V_{CC} = 3.3 \text{ V}$	-	5	-	-	-	Ω
		$I_{SW} = 32 \text{ mA}; V_{CC} = 5.0 \text{ V}$	-	3	-	-	-	Ω

^[1] All typical values are measured at T_{amb} = 25 °C and nominal V_{CC} .


74LVCV2G66


All information provided in this document is subject to legal disclaimers.

^[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

6

10.3 ON resistance test circuit and graphs

11. Dynamic characteristics

Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 13.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	nY to nZ or nZ to nY; see Figure 11	[2][3]						
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	0.4	1.2	-	2.0	ns
		$V_{CC} = 2.7 \text{ V}$		-	0.4	1.0	-	1.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	0.3	0.8	-	1.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-	0.2	0.6	-	1.0	ns
t _{en}	enable time	nE to nY or nZ; see Figure 12	<u>[4]</u>						
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.0	4.7	12	1.0	15	ns
		$V_{CC} = 2.7 \text{ V}$		1.0	4.4	8.5	1.0	11	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.8	7.5	1.0	9.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		1.0	2.7	5.0	1.0	6.5	ns
t _{dis}	disable time	nE to nY or nZ; see Figure 12	<u>[5]</u>						
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.0	6.0	16	1.0	20	ns
		$V_{CC} = 2.7 \text{ V}$		1.0	7.9	15	1.0	19	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	6.5	13.5	1.0	17	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		1.0	4.4	9.0	1.0	11.5	ns
C _{PD}	power dissipation capacitance	$C_L = 50 \text{ pF}; f_i = 10 \text{ MHz};$ V _I = GND to 5.5 V	<u>[6]</u>						
		V _{CC} = 2.5 V		-	9.7	-	-	-	pF
		$V_{CC} = 3.3 \text{ V}$		-	10.3	-	-	-	pF
		$V_{CC} = 5.0 \text{ V}$		-	11.3	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} .

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma \{ (C_L + C_{S(ON)}) \times V_{CC}^2 \times f_o \} \text{ where:}$$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

C_L = output load capacitance in pF;

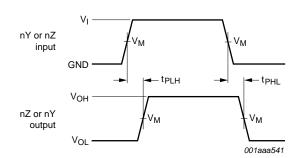
C_{S(ON)} = maximum ON-state switch capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma \{ (C_L + C_{S(ON)}) \times V_{CC}^2 \times f_o \} = \text{sum of the outputs.}$

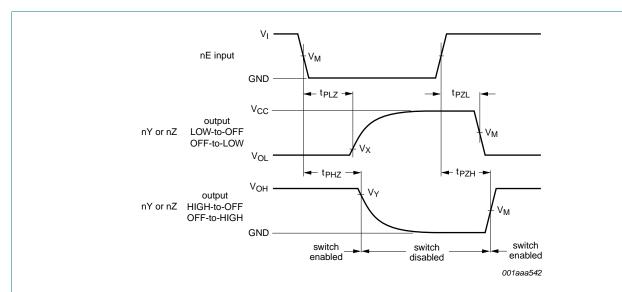
^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .


^[3] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).

^[4] t_{en} is the same as t_{PZH} and t_{PZL} .

^[5] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

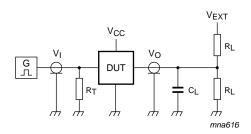
^[6] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).


11.1 Waveforms and test circuit

Measurement points are given in Table 10.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 11. Input (nY or nZ) to output (nZ or nY) propagation delays


Measurement points are given in Table 10.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 12. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output		
V _{CC}	V _M	V _M	V _X	V _Y
2.3 V to 2.7 V	0.5V _{CC}	0.5V _{CC}	V_{OL} + $0.1V_{CC}$	$V_{OH} - 0.1 V_{CC}$
2.7 V	1.5 V	1.5 V	V_{OL} + 0.3 V	$V_{OH} - 0.3 V$
3.0 V to 3.6 V	1.5 V	1.5 V	V_{OL} + 0.3 V	$V_{OH} - 0.3 V$
4.5 V to 5.5 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V

Test data is given in Table 11.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

C_L = Load capacitance including jig and probe capacitance.

 R_L = Load resistance.

 V_{EXT} = External voltage for measuring switching times.

Fig 13. Load circuit for measuring switching times

Table 11. Test data

Supply voltage	Input		Load V _{EXT}				
V _{CC}	VI	t _r , t _f	C _L	R _L	t _{PLH,} t _{PHL}	t _{PZH,} t _{PHZ}	t _{PZL} , t _{PLZ}
2.3 V to 2.7 V	V_{CC}	\leq 2.0 ns	30 pF	500Ω	open	GND	2V _{CC}
2.7 V	2.7 V	\leq 2.5 ns	50 pF	500Ω	open	GND	6.0 V
3.0 V to 3.6 V	2.7 V	\leq 2.5 ns	50 pF	500Ω	open	GND	6.0 V
4.5 V to 5.5 V	V_{CC}	\leq 2.5 ns	50 pF	500Ω	open	GND	2V _{CC}

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

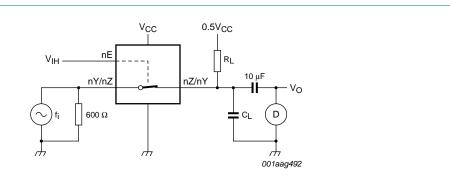
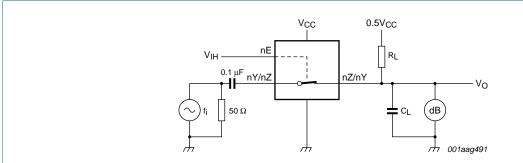

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	f_i = 1 kHz; R_L = 10 k Ω ; C_L = 50 pF; see <u>Figure 14</u>				
		V _{CC} = 2.3 V	-	0.42	-	%
	V _{CC} = 3.0 V	-	0.36	-	%	
		V _{CC} = 4.5 V	-	0.47	-	%
		f_i = 10 kHz; R_L = 10 k Ω ; C_L = 50 pF; see Figure 14				
		V _{CC} = 2.3 V	-	0.11	-	%
		V _{CC} = 3.0 V	-	0.07	-	%
		V _{CC} = 4.5 V	-	0.01	-	%

 Table 12.
 Additional dynamic characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$f_{(-3dB)}$	-3 dB frequency response	$R_L = 600 \Omega$; $C_L = 50 pF$; see <u>Figure 15</u>				
		V _{CC} = 2.3 V	-	160	-	MHz
		V _{CC} = 3.0 V	-	200	-	MHz
		$V_{CC} = 4.5 \text{ V}$	-	210	-	MHz
		$R_L = 50 \Omega$; $C_L = 5 pF$; see <u>Figure 15</u>				
		$V_{CC} = 2.3 \text{ V}$	-	180	-	MHz
		$V_{CC} = 3.0 \text{ V}$	-	180	-	MHz
		$V_{CC} = 4.5 \text{ V}$	-	180	-	MHz
α_{iso}	isolation (OFF-state)	R_L = 600 Ω ; C_L = 50 pF; f_i = 1 MHz; see <u>Figure 16</u>				
		V _{CC} = 2.3 V	-	-65	-	dB
		V _{CC} = 3.0 V	-	-65	-	dB
		$V_{CC} = 4.5 \text{ V}$	-	-62	-	dB
		$R_L = 50 \Omega$; $C_L = 5 pF$; $f_i = 1 MHz$; see Figure 16				
		V _{CC} = 2.3 V	-	-37	-	dB
		V _{CC} = 3.0 V	-	-36	-	dB
		V _{CC} = 4.5 V	-	-36	-	dB
V _{ct}	crosstalk voltage	between digital inputs and switch; $R_L = 600 \Omega$; $C_L = 50 pF$; $f_i = 1 MHz$; $t_r = t_f = 2 ns$; see Figure 17				
		V _{CC} = 2.3 V	-	91	-	mV
		V _{CC} = 3.0 V	-	119	-	mV
		V _{CC} = 4.5 V	-	205	-	mV
Xtalk	crosstalk	between switches; $R_L = 600 \Omega$; $C_L = 50 \text{ pF}$; $f_i = 1 \text{ MHz}$; see Figure 18				
		V _{CC} = 2.3 V	-	-56	-	dB
		$V_{CC} = 3.0 \text{ V}$	-	-55	-	dB
		$V_{CC} = 4.5 \text{ V}$	-	-55	-	dB
		between switches; $R_L = 50 \Omega$; $C_L = 5 \text{ pF}$; $f_i = 1 \text{ MHz}$; see Figure 18				
		$V_{CC} = 2.3 \text{ V}$	-	-29	-	dB
		V _{CC} = 3.0 V	-	-28	-	dB
		$V_{CC} = 4.5 \text{ V}$	-	-28	-	dB
Q _{inj}	charge injection	C_L = 0.1 nF; V_{gen} = 0 V; R_{gen} = 0 Ω ; f_i = 1 MHz; R_L = 1 M Ω ; see <u>Figure 19</u>				
		$V_{CC} = 2.5 \text{ V}$	-	< 0.003	-	рС
		$V_{CC} = 3.3 \text{ V}$	-	0.003	-	рС
		$V_{CC} = 4.5 \text{ V}$	-	0.0035	-	рС
		V _{CC} = 5.5 V	-	0.0035	-	рС

11.3 Test circuits


Test conditions:

 $V_{CC} = 2.3 \text{ V: } V_i = 2 \text{ V (p-p)}.$

 $V_{CC} = 3 \text{ V: } V_i = 2.5 \text{ V (p-p)}.$

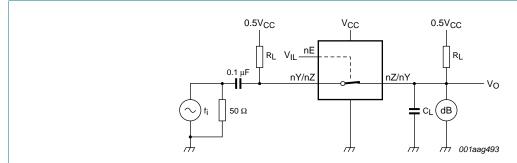

 $V_{CC} = 4.5 \text{ V: } V_i = 4 \text{ V (p-p)}.$

Fig 14. Test circuit for measuring total harmonic distortion

Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads -3 dB.

Fig 15. Test circuit for measuring the frequency response when switch is in ON-state

Adjust f_i voltage to obtain 0 dBm level at input.

Fig 16. Test circuit for measuring isolation (OFF-state)

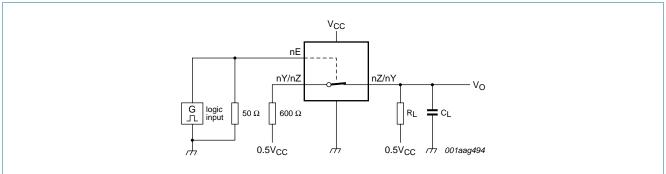


Fig 17. Test circuit for measuring crosstalk voltage (between digital inputs and switch)

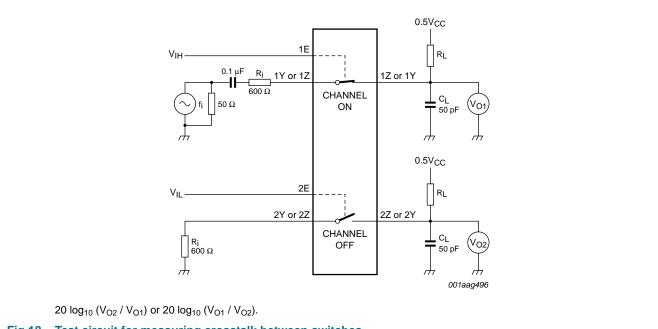
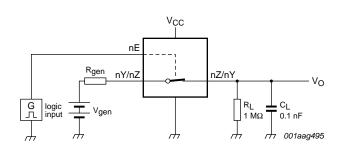
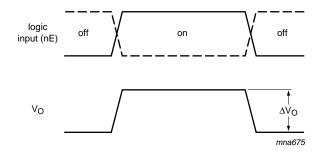




Fig 18. Test circuit for measuring crosstalk between switches

a. Test circuit

b. Input and output pulse definitions

 $Q_{inj} = \Delta V_O \times C_L.$

 ΔV_{O} = output voltage variation.

R_{gen} = generator resistance.

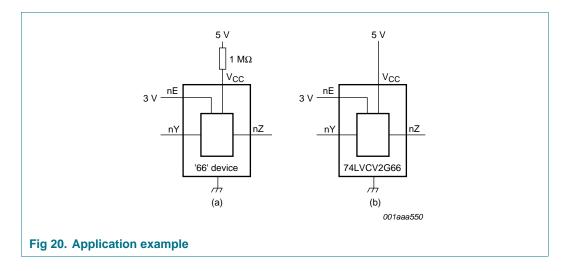
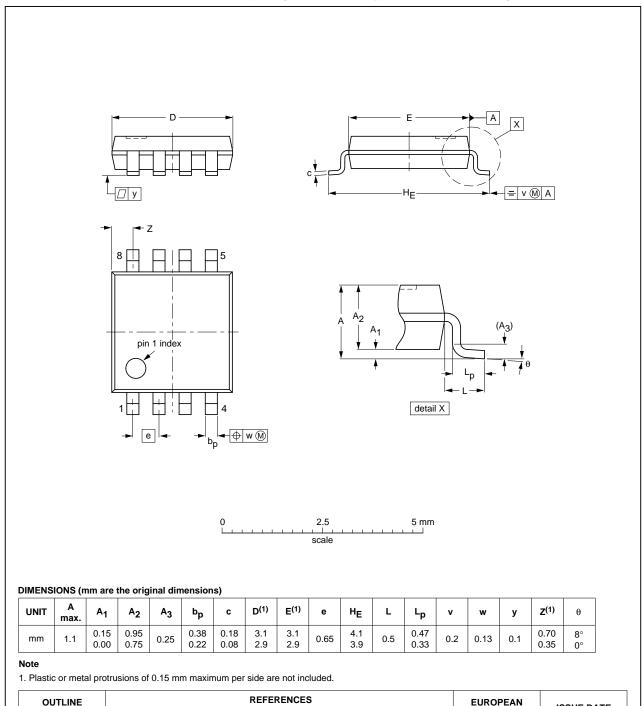

 V_{gen} = generator voltage.

Fig 19. Test circuit for measuring charge injection

12. Application information


Use the 74LVCV2G66 to reduce component count and footprint in low-power portable applications.

Typical '66' devices do not have low-power enable inputs causing a high ΔI_{CC} . To reduce power consumption in portable (battery) applications, a current limiting resistor is used. (see <u>Figure 20</u>a). The low-power enable inputs of the 74LVCV2G66 have much lower ΔI_{CC} , eliminating the necessity of the current limiting resistor (see <u>Figure 20</u>b).

13. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

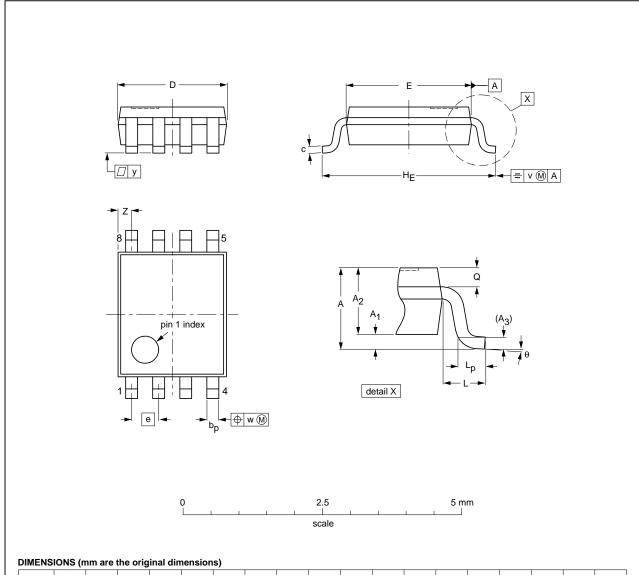

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT505-2					02-01-16

Fig 21. Package outline SOT505-2 (TSSOP8)

LVCV2G66 All information provided in this document is subject to legal disclaimers.

VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1	0.15 0.00	0.85 0.60	0.12	0.27 0.17	0.23 0.08	2.1 1.9	2.4 2.2	0.5	3.2 3.0	0.4	0.40 0.15	0.21 0.19	0.2	0.13	0.1	0.4 0.1	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE
SOT765-1		MO-187				02-06-07

Fig 22. Package outline SOT765-1 (VSSOP8)

74LVCV2G66

All information provided in this document is subject to legal disclaimers.

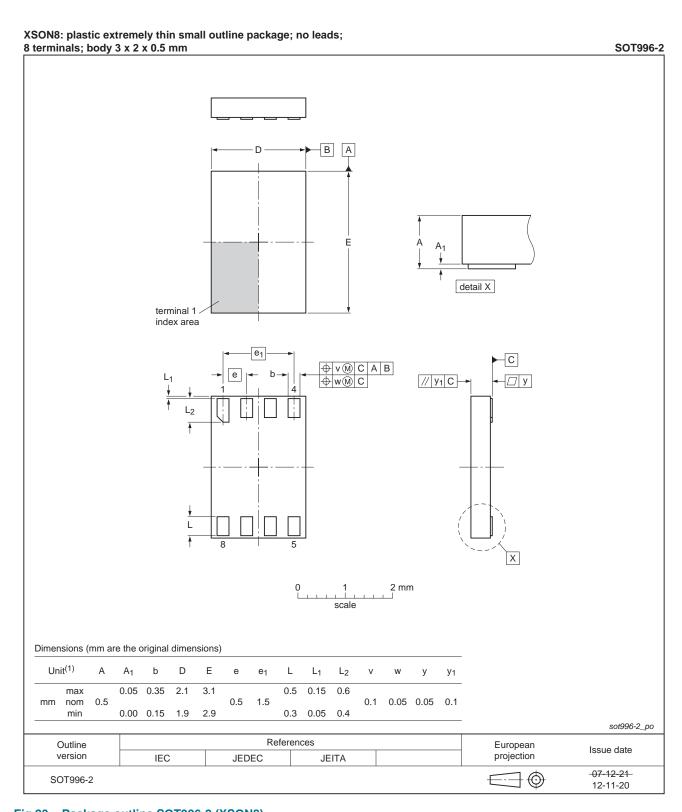


Fig 23. Package outline SOT996-2 (XSON8)

74LVCV2G66

All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test

15. Revision history

Table 14: Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVCV2G66 v.5	20130329	Product data sheet	-	74LVCV2G66 v.4
Modifications:	 For type num 	ber 74LVCV2G66GD XSON8	J has changed to XSC	N8.
74LVCV2G66 v.4	20111122	Product data sheet	-	74LVCV2G66 v.3
Modifications:	 Legal pages 	updated.		
74LVCV2G66 v.3	20100616	Product data sheet	-	74LVCV2G66 v.2
74LVCV2G66 v.2	20080703	Product data sheet	-	74LVCV2G66 v.1
74LVCV2G66 v.1	20040402	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

74LVCV2G66

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors 74LVCV2G66

Overvoltage tolerant bilateral switch

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1	General description
2	Features and benefits 1
3	Ordering information
4	Marking 2
5	Functional diagram 2
6	Pinning information
6.1	Pinning
6.2	Pin description
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
10.1	Test circuits
10.2	ON resistance
10.3	ON resistance test circuit and graphs 7
11	Dynamic characteristics 9
11.1	Waveforms and test circuit 10
11.2	Additional dynamic characteristics 11
11.3	Test circuits
12	Application information 16
13	Package outline
14	Abbreviations
15	Revision history
16	Legal information
16.1	Data sheet status 21
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks22
17	Contact information 22
18	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com