

TS3A44159 SCDS225B - MARCH 2007-REVISED JANUARY 2015

TS3A44159 0.45-Ω Quad SPDT Analog Switch 4-Channel 2:1 Multiplexer – Demultiplexer With Two Controls

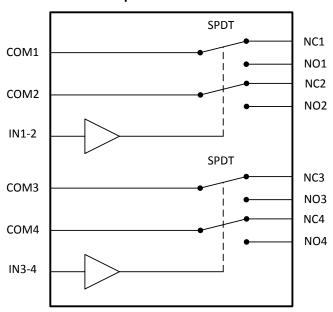
Features

- Specified Break-Before-Make Switching
- Low ON-State Resistance ($<0.5 \Omega$)
- Control Inputs Are 1.8-V Logic Compatible
- Low Charge Injection
- **Excellent ON-State Resistance Matching**
- Low Total Harmonic Distortion (THD)
- 1.65-V to 4.3-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - ±2000-V Human-Body Model (A114-B, Class II)
 - ±1000-V Charged-Device Model (C101)

Applications

- Cell Phones
- **PDAs**
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communication Circuits
- Modems
- **Hard Drives**
- Computer Peripherals
- Wireless Pins and Peripherals

3 Description


The TS3A44159 is a bidirectional 4-channel singlepole double-throw (SPDT) analog switch with two control inputs, which is designed to operate from 1.65 V to 4.3 V. This device is also known as a 2 channel double-pole double-throw (DPDT) configuration. It offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature that prevents signal distortion during the transferring of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	TSSOP (16)	5.00 mm × 4.40 mm		
TS3A44159	VQFN (16)	3.00 mm × 3.00 mm		
	UQFN (16)	2.60 mm × 1.80 mm		

(1) For all available packages, see the orderable addendum at the end of the datasheet.

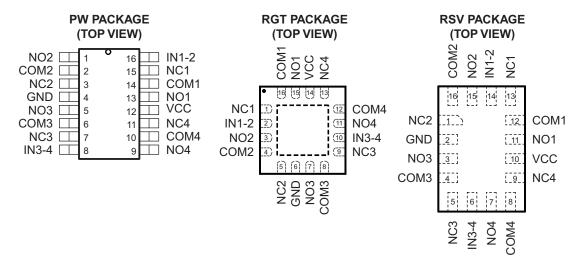
Simplified Schematic

Table of Contents

1	Features 1	8 Detailed Description	. 19
2	Applications 1	8.1 Overview	. 19
3	Description 1	8.2 Functional Block Diagram	. 19
4	Revision History2	8.3 Feature Description	. 19
5	Pin Configuration and Functions	8.4 Device Functional Modes	. 19
6	Specifications4	9 Application and Implementation	20
U	6.1 Absolute Maximum Ratings	9.1 Application Information	. 20
	6.2 ESD Ratings	9.2 Typical Application	
	6.3 Recommended Operating Conditions	10 Power Supply Recommendations	
	6.4 Thermal Information	11 Layout	
	6.5 Electrical Characteristics for 1.8-V Supply	11.1 Layout Guidelines	
	6.6 Electrical Characteristics for 2.1-V Supply	11.2 Layout Example	
	6.7 Electrical Characteristics for 2.5-V Supply	12 Device and Documentation Support	
	6.8 Electrical Characteristics for 3.3-V Supply	12.1 Trademarks	
	6.9 Electrical Characteristics for 4.3-V Supply	12.2 Electrostatic Discharge Caution	. 23
	6.10 Typical Characteristics	12.3 Glossary	
7	Parameter Measurement Information 14	13 Mechanical, Packaging, and Orderable Information	. 23

4 Revision History

Changes from Revision B (October 2012) to Revision C


Page

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

Submit Documentation Feedback

5 Pin Configuration and Functions

Pin Functions

	P	IN		I/O	DESCRIPTION
PW NO.	RGT NO.	RSV NO.	NAME	1/0	DESCRIPTION
1	3	15	NO2	I/O	Normally Open
2	4	16	COM2	I/O	Common
3	5	1	NC2	I/O	Normally Closed
4	6	2	GND	_	Ground
5	7	3	NO3	I/O	Normally Open
6	8	4	COM3	I/O	Common
7	9	5	NC3	I/O	Normally Closed
8	10	6	IN3-4	1	Digital Control to connect COM to NO or NC
9	11	7	NO4	I/O	Normally Open
10	12	8	COM4	I/O	Common
11	13	9	NC4	I/O	Normally Closed
12	14	10	VCC	1	Power Supply
13	15	11	NO1	I/O	Normally Open
14	16	12	COM1	I/O	Common
15	1	13	NC1	I/O	Normally Closed
16	2	14	IN1-2	I/O	Digital Control to connect COM to NO or NC

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽³⁾		-0.5	4.6	V
V_{NC} V_{NO} V_{COM}	Analog voltage (3) (4) (5)	Analog voltage ⁽³⁾ (4) (5)		V _{CC} + 0.5	V
I _K	Analog port diode current	V_{NC} , V_{NO} , $V_{COM} < 0$	-50		mA
I _{NC}	ON-state switch current		-200	200	
I _{NO} I _{COM}	ON-state peak switch current (6)	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-400	400	mA
V_{IN}	Digital input voltage		-0.5	4.6	V
I _{IK}	Digital input clamp current ⁽³⁾ (4)	V ₁ < 0	-50		mA
I _{CC}	Continuous current through V _{CC}	Continuous current through V _{CC}			mA
I _{GND}	Continuous current through GND				mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (5) This value is limited to 4.6 V maximum.
- (6) Pulse at 1-ms duration <10% duty cycle

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply Voltage	0	4.3	V
V _{NC} V _{NO} V _{COM}	Analog Voltage	0	4.3	V
V_{IN}	Digital Input Voltage	0	4.3	V

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

			TS3A44159				
	THERMAL METRIC ⁽¹⁾	PW	RGT	RSV	UNIT		
			16 PINS				
$R_{\theta JA}$	Junction-to-ambient thermal resistance	108.0	45.4	107.1			
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	43.0	58.1	41.2			
$R_{\theta JB}$	Junction-to-board thermal resistance	53.1	18.6	43.6	°C/W		
Ψ_{JT}	Junction-to-top characterization parameter	4.6	1.1	1.1	*C/VV		
Ψ_{JB}	Junction-to-board characterization parameter	52.5	18.6	43.6			
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	3.9	N/A			

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics for 1.8-V Supply

 $V_{cc} = 1.65 \text{ V}$ to 1.95 V. $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)(1)

PA	RAMETER	TEST CON	NDITIONS	TA	V _{CC}	MIN	TYP	MAX	UNIT
ANALOG S	WITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V _{CC}	V
R _{on}	ON-state resistance	V_{NO} or $V_{NC} = 1.5 \text{ V}$, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 16	25°C Full	1.65 V		0.5	0.7	Ω
	ON-state	V_{NO} or $V_{NC} = 1.5 \text{ V}$,		25°C			0.05	0.07	
ΔR_{on}	resistance match between channels	0.6 V I _{COM} = -100 mA,	Switch ON, See Figure 16	Full	1.65 V			0.1	Ω
	ON-state	V_{NO} or $V_{NC} = 1.5 \text{ V}$,	0 1: 1 0:1	25°C			0.5	0.7	
$R_{on(flat)}$	resistance flatness	0.6 V 1.5 V, 2.5 V, I _{COM} = -100 mA,	Switch ON, See Figure 16	Full	1.65 V			0.8	Ω
		V_{NO} or $V_{NC} = 0.3 \text{ V}$,		25°C		-10	0.5	10	
I _{NO(OFF)} , I _{NC(OFF)}	NC, NO OFF leakage current	$V_{COM} = 1.65 \text{ V},$ or V_{NO} or $V_{NC} = 1.65 \text{ V},$ $V_{COM} = 0.3 \text{ V},$	See Figure 17	Full	1.95 V	-20		20	nA
	NO NO	V_{NO} or $V_{NC} = 0.3 \text{ V}$		25°C		-10	0.1	10	nA
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	$V_{COM} = Open,$ or V_{NO} or $V_{NC} = 1.65 V,$ $V_{COM} = Open,$	See Figure 18	Full	1.95 V	-20		20	
		V_{NO} or V_{NC} = Open,		25°C		-10	0.1	10	
I _{COM(ON)}	COM ON leakage current	$V_{COM} = 0.3V$, or V_{NO} or $V_{NC} = Open$, $V_{COM} = 1.65 V$,	See Figure 18	Full	1.95 V	-20		20	nA
DIGITAL CO	ONTROL INPUTS (IN	1-2, IN3-4) ⁽²⁾							
V _{IH}	Input logic high			Full		1		4.3	V
V_{IL}	Input logic low			Full		0		0.4	V
I _{IH} , I _{IL}	Input leakage	V _{IN} = 3.6 V or 0		25°C	1.95 V		0.5	10	nA
	current	114		Full				50	
DYNAMIC				0	4.634				
t _{ON}	Turn-on time	$V_{COM} = V_{CC},$ $R_1 = 50 \Omega,$	$C_1 = 35 pF$	25°C	1.8 V 1.65 V to		40	70 75	ns

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Electrical Characteristics for 1.8-V Supply (continued)

 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PA	RAMETER	TEST CON	NDITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
		$V_{COM} = V_{CC}$		25°C	1.8 V		22	45	
t _{OFF}	Turn-off time	$R_L = 50 \Omega$	$C_L = 35 pF$	Full	1.65 V to 1.95 V			50	ns
	Break-before-	$V_{NC} = V_{NO} = V_{CC}$		25°C	1.8 V	5	25	70	
t _{BBM}	make time	$R_L = 50 \Omega$,	$C_L = 35 pF$	Full	1.65 V to 1.95 V	4		75	ns
$Q_{\mathbb{C}}$	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF	25°C	1.8 V		64		рC
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	1.8 V		52		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V _{NC} or V _{NO} = V _{CC} or GND, Switch OFF,	See Figure 19	25°C	1.8 V		164		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 19	25°C	1.8 V		164		pF
C _I	Digital input capacitance	$V_I = V_{CC}$ or GND		25°C	1.8 V		2.5		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON	25°C	1.8 V		35		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 100 kHz,	Switch OFF	25°C	1.8 V		-71		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, f = 100 kHz,	Switch ON	25°C	1.8 V		-73		dB
THD	Total harmonic distortion	$R_L = 600 \ \Omega,$ $C_L = 50 \ pF,$ $V_{COM} = GND \ to \ V_{CC}$	f = 20 Hz to 20 kHz	25°C	1.8 V		0.1%		
SUPPLY									
laa	Positive supply	$V_I = V_{CC}$ or GND,	Switch ON or OFF	25°C	1.95 V		0.001	0.05	пΔ
I _{CC}	current	VI - VCC OI GIND,	SWILCH ON OF OFF	Full	1.30 V			0.15	μA

6.6 Electrical Characteristics for 2.1-V Supply

 V_{CC} = 2.00 V to 2.20 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PARAMETER		TEST CONDITIONS	ΤΛ	V _{cc}	MIN	TYP MAX	UNIT
DIGITAL	CONTROL INPUTS (IN	I-2, IN3-4)	·A				
V _{IH}	Input logic high		Full		1.2	4.3	V
V_{IL}	Input logic low		Full		0	0.5	V

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

6.7 Electrical Characteristics for 2.5-V Supply

 $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}, T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (unless otherwise noted)}^{(1)}$

P/	ARAMETER	TEST COND	ITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
ANALOG SI	WITCH								
V_{COM} , V_{NO} , V_{NC}	Analog signal range					0		V _{CC}	V
R _{on}	ON-state resistance	V_{NO} or $V_{NC} = 1.8 \text{ V}$, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 16	25°C Full	2.3 V		0.45	0.6	Ω
ΔR_{on}	ON-state resistance match between channels	V_{NO} or $V_{NC} = 1.8 \text{ V}$, 0.8 V, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 16	25°C Full	2.3 V		0.045	0.07	Ω
R _{on(flat)}	ON-state resistance flatness	V_{NO} or $V_{NC} = 1.8 \text{ V}$, 0.8 V $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 16	25°C Full	2.3 V		0.06	0.15	Ω
		V_{NO} or $V_{NC} = 0.3 \text{ V}$,		25°C		-10	0.5	10	
I _{NO(OFF)} , I _{NC(OFF)}	NC, NO OFF leakage current	$V_{COM} = 2.3 \text{ V},$ or $V_{NO} \text{ or } V_{NC} = 2.3 \text{ V},$ $V_{COM} = 0.3 \text{V},$	See Figure 17	Full	2.7 V	-20		20	nA
		V_{NO} or $V_{NC} = 0.3 V$,		25°C		-10	0.1	10	
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	$V_{COM} = Open,$ or V_{NO} or $V_{NC} = 2.3 V,$ $V_{COM} = Open,$	See Figure 18	Full	2.7 V	-20		20	nA
		V_{NO} or V_{NC} = Open,		25°C		-10	0.1	10	ı
I _{COM(ON)}	COM ON leakage current	$V_{COM} = 0.3 \text{ V},$ or $V_{NO} \text{ or } V_{NC} = \text{Open},$ $V_{COM} = 2.3 \text{ V},$	See Figure 18	Full	2.7 V	-20		20	nA
DIGITAL CO	ONTROL INPUTS (IN1	-2, IN3-4) ⁽²⁾							
V _{IH}	Input logic high			Full		1.2		4.3	V
V_{IL}	Input logic low			Full		0		0.6	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 3.6 V or 0		25°C Full	2.7 V		0.5	10 50	nA
DYNAMIC									
				25°C	2.5 V		2.6	47	<u> </u>
t _{ON}	Turn-on time	$V_{COM} = V_{CC},$ $R_L = 50 \Omega,$	C _L = 35 pF	Full	2.3 V to 2.7 V			50	ns
				25°C	2.5 V		16.5	34	
t _{OFF}	Turn-off time	$V_{COM} = V_{CC},$ $R_L = 50 \Omega,$	C _L = 35 pF	Full	2.3 V to 2.7 V			35	ns
				25°C	2.5 V	4	15	35	
t _{BBM}	Break-before- make time	$\begin{aligned} V_{NC} &= V_{NO} = V_{CC}, \\ R_L &= 50 \ \Omega, \end{aligned}$	C _L = 35 pF	Full	2.3 V to 2.7 V	3		35	ns
Q _C	Charge injection	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF	25°C	2.5 V		84		pC
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	2.5 V		52		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V _{NC} or V _{NO} = V _{CC} or GND, Switch OFF,	See Figure 19	25°C	2.5 V		163		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND,	See Figure 19	25°C	2.5 V		163		pF

 ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Electrical Characteristics for 2.5-V Supply (continued)

 $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C (unless otherwise noted)}^{(1)}$

	PARAMETER	TEST CO	ONDITIONS	TA	V _{CC}	MIN TYP	MAX	UNIT
C _I	Digital input capacitance	V _I = V _{CC} or GND		25°C	2.5 V	2.5		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON	25°C	2.5 V	35		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 100 kHz,	Switch OFF	25°C	2.5 V	-71		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 100 kHz,	Switch ON	25°C	2.5 V	-73		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 50 \text{ pF},$ $V_{COM} = \text{GND to } V_{CC}$	f = 20 Hz to 20 kHz	25°C	2.5 V	0.009%		
SUPPLY								
I _{CC}	Positive supply current	$V_I = V_{CC}$ or GND,	Switch ON or OFF	25°C	2.5 V	0.004	0.1	μΑ
	Current			Full			0.5	

6.8 Electrical Characteristics for 3.3-V Supply

 $V_{CC} = 3 \text{ V to } 3.6 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C (unless otherwise noted)}^{(1)}$

P.	ARAMETER	TEST COND	TA	V _{CC}	MIN	TYP	MAX	UNIT	
ANALOG S	WITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V _{CC}	V
R _{on}	ON-state	V_{NO} or $V_{NC} = 2.0 \text{ V}$,	Switch ON,	25°C	3 V		0.37	0.55	Ω
Non	resistance	$I_{COM} = -100 \text{ mA},$	See Figure 16	Full	3 V			0.6	77
	ON-state	V_{NO} or $V_{NC} = 2.0 \text{ V}$, 0.8 V.	V_{NO} or $V_{NC} = 2.0 \text{ V}$, 0.8 V, Switch ON,				0.06	0.07	
ΔR_{on}	resistance match between channels	$I_{COM} = -100 \text{ mA},$	See Figure 16	Full	3 V			0.1	Ω
	ON-state	V_{NO} or $V_{NC} = 2.0 \text{ V}$, 0.8 V Switch ON,		25°C			0.05	0.1	
$R_{on(flat)}$	resistance flatness	$I_{COM} = -100 \text{ mA},$	See Figure 16	Full	3 V			0.1	Ω
		V_{NO} or $V_{NC} = 0.3 \text{ V}$,		25°C		-15	5	15	
I _{NO(OFF)} , NC, NO OFF leakage current	$\begin{split} &V_{COM} = 3.0 \text{ V,} \\ &\text{or} \\ &V_{NO} \text{ or } V_{NC} = 3.0 \text{ V,} \\ &V_{COM} = 0.3 \text{ V,} \end{split}$	See Figure 17	Full	3.6 V	-50		50	nA	
		V_{NO} or $V_{NC} = 0.3 \text{ V}$,		25°C		-15	5	15	
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	V_{COM} = Open, or V_{NO} or V_{NC} = 3.0 V, V_{COM} = Open,	See Figure 18	Full	3.6 V	-50		50	nA
		V_{NO} or V_{NC} = Open,		25°C		-15	5	15	
I _{COM(ON)} COM ON leakage current	ON leakage	$V_{COM} = 0.3 \text{ V},$ or $V_{NO} \text{ or } V_{NC} = \text{Open},$ $V_{COM} = 3.0 \text{ V},$	See Figure 18	Full	3.6 V	-50		50	nA
DIGITAL CO	NTROL INPUTS (IN1-	-2, IN3-4) ⁽²⁾							
V _{IH}	Input logic high			Full		1.25		4.3	V
V_{IL}	Input logic low			Full		0		0.8	V
las la	Input leakage	leakage V = 3.6 V or 0		25°C	3.6 V		0.5	10	nA
I _{IH} , I _{IL}	current	VIN - 3.0 V 01 0	$V_{IN} = 3.6 \text{ V or } 0$					50	шА

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Submit Documentation Feedback

Copyright © 2007–2015, Texas Instruments Incorporated

⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Electrical Characteristics for 3.3-V Supply (continued)

 V_{CC} = 3 V to 3.6 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

P.	ARAMETER	TEST CO	NDITIONS	TA	V _{CC}	MIN	TYP	MAX	UNIT
DYNAMIC									
		V - V		25°C	3 V		20	38	
t _{ON}	Turn-on time	$V_{COM} = V_{CC},$ $R_L = 50 \Omega,$	$C_L = 35 pF$	Full	3 V to 3.6 V			40	ns
		W W		25°C	3 V		14	34	
t _{OFF}	Turn-off time	$V_{COM} = V_{CC},$ $R_L = 50 \Omega,$	$C_L = 35 pF$	Full	3 V to 3.6 V			35	ns
	Dunali hafana malia	\(\lambda \) \(\lambda \)		25°C	3 V	3	11	35	
t _{BBM}	Break-before-make time	$V_{NC} = V_{NO} = V_{CC},$ $R_L = 50 \Omega,$	$C_L = 35 pF$	Full	3 V to 3.6 V	2		55	ns
$Q_{\mathbb{C}}$	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF	25°C	3 V		109		рC
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	3 V		51		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V _{NC} or V _{NO} = V _{CC} or GND, Switch OFF,	See Figure 19	25°C	3 V		162		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 19	25°C	3 V		162		pF
C _I	Digital input capacitance	$V_I = V_{CC}$ or GND		25°C	3 V		2.5		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON	25°C	3 V		35		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 100 kHz,	Switch OFF	25°C	3 V		-71		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 100 kHz,	Switch ON	25°C	3 V		-73		dB
THD	Total harmonic distortion	$R_L = 600 \ \Omega,$ $C_L = 50 \ pF,$ $V_{COM} = GND \ to \ V_{CC}$	f = 20 Hz to 20 kHz	25°C	3 V	(0.003%		
SUPPLY		,							
I _{cc}	Positive supply current	$V_I = V_{CC}$ or GND,	Switch ON or OFF	25°C Full	3.6 V		0.015	0.2	μA

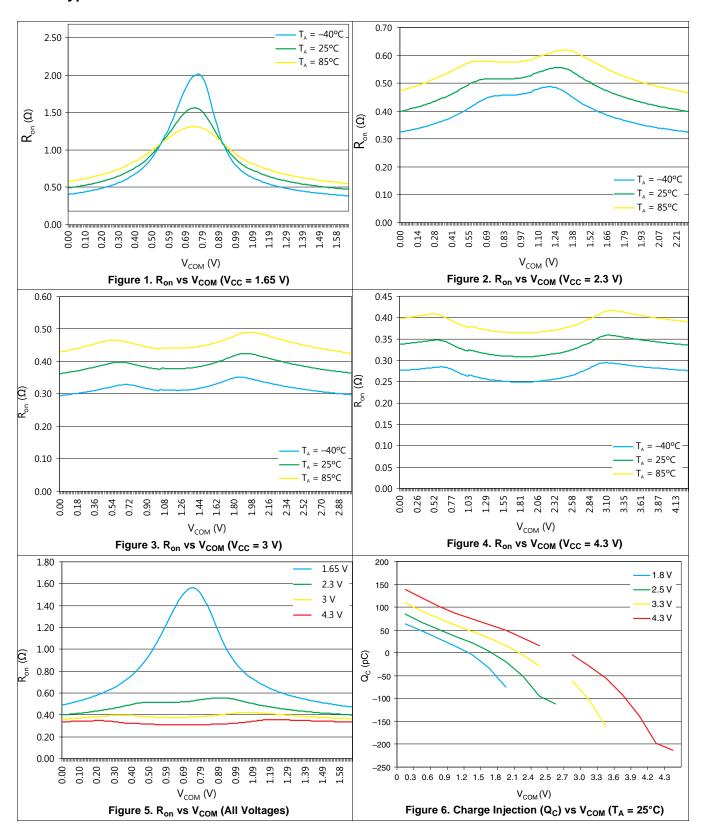
6.9 Electrical Characteristics for 4.3-V Supply

 $T_A = -40$ °C to 85°C (unless otherwise noted)⁽¹⁾

P	ARAMETER	TEST CO	TA	Vcc	MIN	TYP	MAX	UNIT	
ANALOG SV	ALOG SWITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V _{CC}	V
R _{on} ON-state resistance	V_{NO} or $V_{NC} = 2.5 \text{ V}$,	Switch ON,	25°C	4.3 V		0.3	0.45	0	
	resistance	$I_{COM} = -100 \text{ mA},$	See Figure 16	Full	4.3 V			0.5	Ω
	ON-state	V_{NO} or $V_{NC} = 2.5 \text{ V}$,	Switch ON.	25°C			0.05	0.07	Ω
OII	resistance match between channels	$I_{COM} = -100 \text{ mA},$	See Figure 16	Full	4.3 V			0.1	
ON-state		V_{NO} or $V_{NC} = 1 V$,	Switch ON,	25°C			0.02	0.1	
R _{on(flat)}	resistance flatness	1.5 V, 2.5 V, $I_{COM} = -100 \text{ mA},$	See Figure 16	Full	4.3 V			0.1	Ω

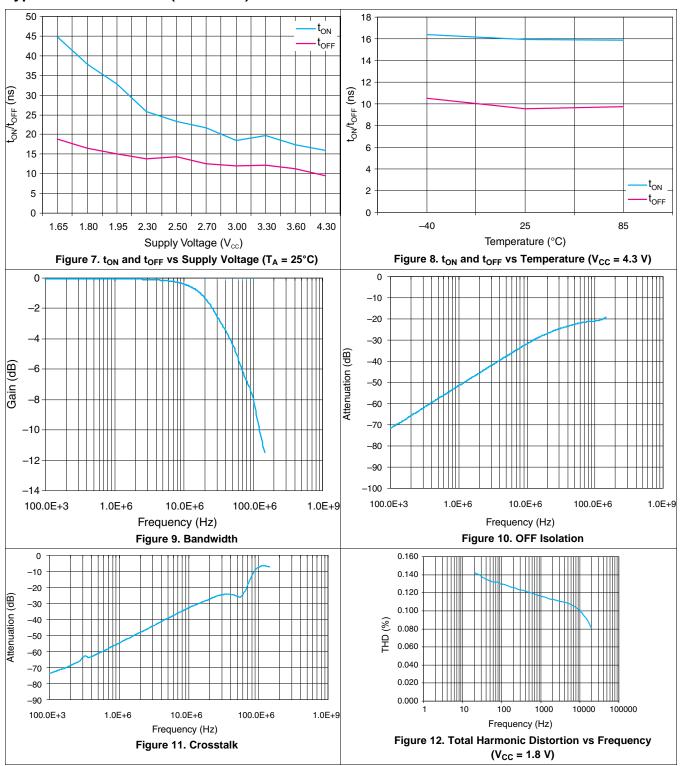
(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Electrical Characteristics for 4.3-V Supply (continued)


 $T_A = -40$ °C to 85°C (unless otherwise noted)⁽¹⁾

P.	ARAMETER	TEST CO	NDITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
		V_{NO} or $V_{NC} = 0.3 \text{ V}$,		25°C		-20	5	20	
I _{NO(OFF)} ,	NC, NO OFF leakage	$V_{COM} = 3.0 \text{ V},$	See Figure 17		4.3 V				nA
I _{NC(OFF)}	current	V_{NO} or $V_{NC} = 3.0 \text{ V}$,			4.5 V	-90		90	IIA
		$V_{COM} = 0.3 V$,							
	NC NO	V_{NO} or $V_{NC} = 0.3 \text{ V}$,		25°C		-20	5	20	
I _{NO(ON)} ,	NC, NO ON leakage	V _{COM} = Open, or	See Figure 18		4.3 V				nA
INC(ON)	current	V_{NO} or $V_{NC} = 3.0 \text{ V}$, $V_{COM} = \text{Open}$,		Full		-90		90	
		V_{NO} or V_{NC} = Open,		25°C		-20	5	20	
	COM ON leakage	$V_{COM} = 0.3 \text{ V},$	See Figure 18		4.3 V				nA
I _{COM(ON)}	current	V_{NO} or V_{NC} = Open,	Occ rigure to	Full	4.5 V	-90		90	ш
		$V_{COM} = 3.0 \text{ V},$							
	ONTROL INPUTS (IN1-2	2, IN3-4) ⁽²⁾							
V _{IH}	Input logic high			Full	4.3 V	1.5		4.3	V
V _{IL}	Input logic low			Full	4.3 V	0		1	V
I _{IH} , I _{IL}	Input leakage	V _{IN} = 3.6 V or 0		25°C	4.3 V		0.5	10	nA
	current	IIV		Full				50	
DYNAMIC									
t _{ON}	Turn-on time	$V_{COM} = V_{CC}$	$C_{L} = 35 \text{ pF}$	25°C	4.3 V		17	23	ns
ON		$R_L = 50 \Omega$,		Full				25	
t _{OFF}	Turn-off time	$V_{COM} = V_{CC}$	$C_{L} = 35 \text{ pF}$	25°C	4.3 V		12	32	ns
		$R_L = 50 \Omega$,		Full				35	
t _{BBM}	Break-before-make	$V_{NC} = V_{NO} = V_{CC}$	$C_{L} = 35 \text{ pF}$	25°C	4.3 V	2	9	30	ns
	time	$R_L = 50 \Omega$,	- '	Full		1		35	
$Q_{\mathbb{C}}$	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF	25°C	4.3 V		139		рС
C _{NC(OFF)} ,	NC, NO	V_{NC} or $V_{NO} = V_{CC}$ or	0 = 10						_
C _{NO(OFF)}	off capacitance	GND, Switch OFF,	See Figure 19	25°C	4.3 V		50		pF
	·	V_{NC} or $V_{NO} = V_{CC}$ or							
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	GND,	See Figure 19	25°C	4.3 V		160		pF
ONO(ON)		Switch OFF,							
$C_{COM(ON)}$	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 19	25°C	4.3 V		160		pF
C _I	Digital input capacitance	$V_I = V_{CC}$ or GND		25°C	4.3 V		2.5		pF
BW	Bandwidth	$R_1 = 50 \Omega$	Switch ON	25°C	4.3 V		35		MHz
		$R_L = 50 \Omega$,							
O _{ISO}	OFF isolation	f = 100 kHz,	Switch OFF	25°C	4.3 V		–71		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 100 kHz,	Switch ON	25°C	4.3 V		-73		dB
THD	Total harmonic	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz	25°C	4.3 V	(0.003%		
	distortion	$V_{COM} = GND \text{ to } V_{CC}$							
SUPPLY									
la a	Positive supply	$V_I = V_{CC}$ or GND,	Switch ON or OFF	25°C	4.3 V		0.15	0.4	11.
I _{CC}	current	Al = ACC OI GIAD	SWILLII ON UI OFF	Full	4.3 V			1.2	μA

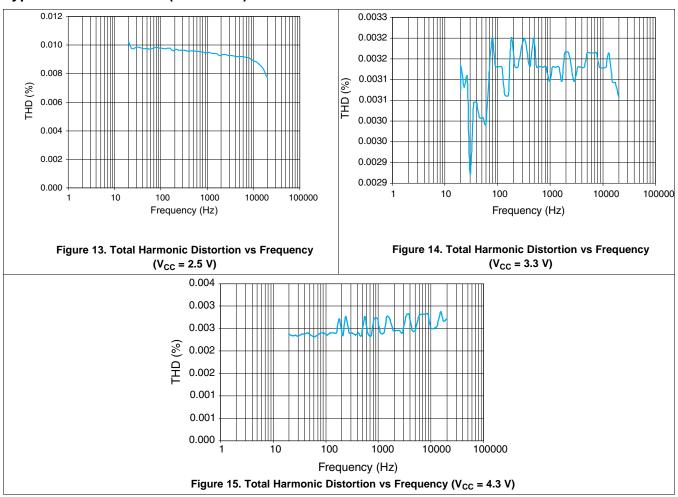
⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.



6.10 Typical Characteristics

TEXAS INSTRUMENTS

Typical Characteristics (continued)



Submit Documentation Feedback

Copyright © 2007–2015, Texas Instruments Incorporated

Typical Characteristics (continued)

7 Parameter Measurement Information

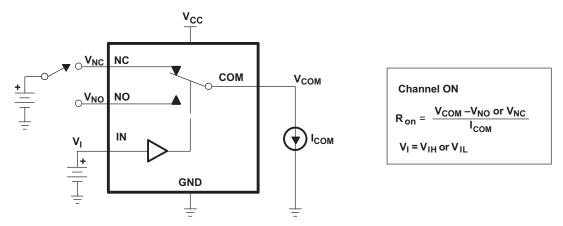
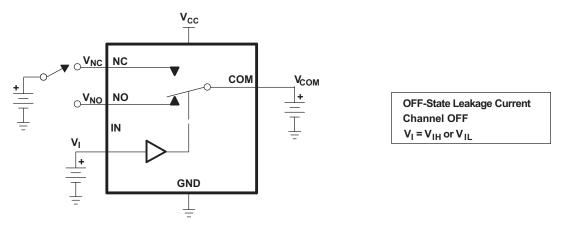



Figure 16. ON-state Resistance (R_{ON})

 $\textbf{Figure 17. OFF-State Leakage Current (I}_{NC(OFF)}, I_{NC(PWROFF)}, I_{NO(OFF)}, I_{NO(PWROFF)}, I_{COM(OFF)}, I_{COM(PWROFF)})\\$

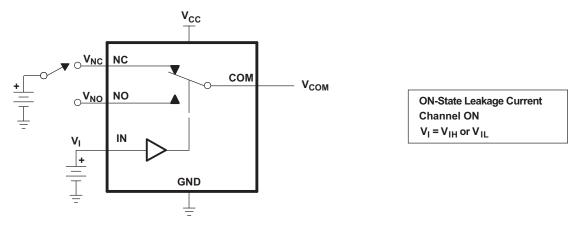


Figure 18. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NC(ON)}$, $I_{NO(ON)}$)

Submit Documentation Feedback

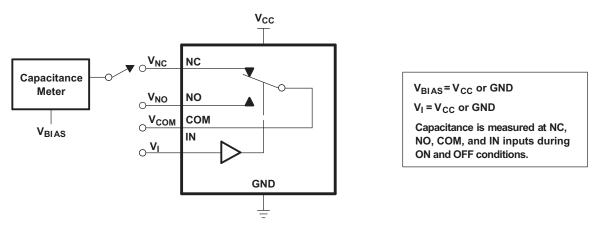
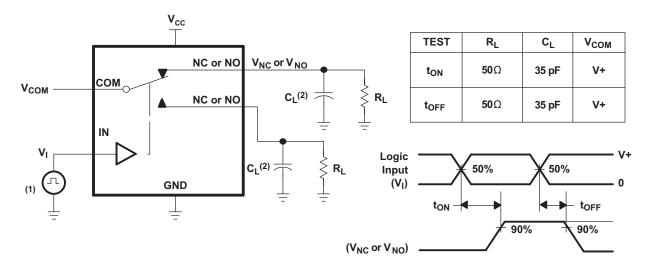
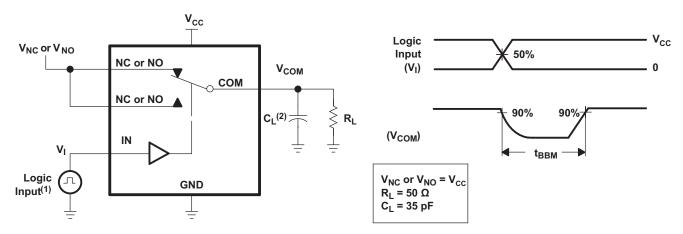



Figure 19. Capacitance (C_I, $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NO(OFF)}$, $C_{NC(ON)}$, $C_{NO(ON)}$)


A. All input pulses are supplied by generators having the following characteristics:

PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.

B. C_L includes probe and jig capacitance.

Figure 20. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics:

PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.

Figure 21. Break-Before-Make Time (t_{BBM})

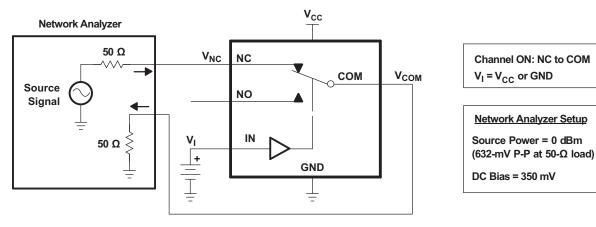


Figure 22. Bandwidth (BW)

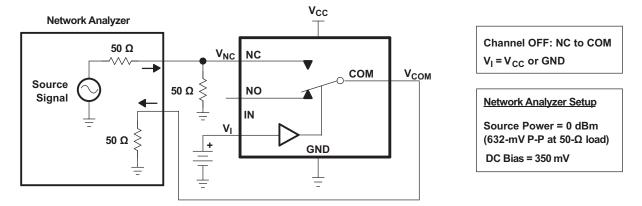


Figure 23. OFF Isolation (O_{ISO})

Submit Documentation Feedback

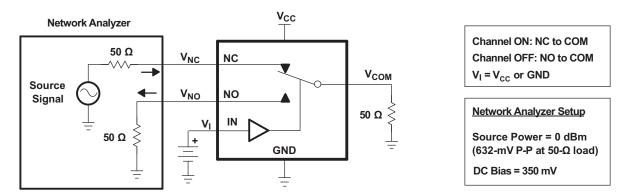
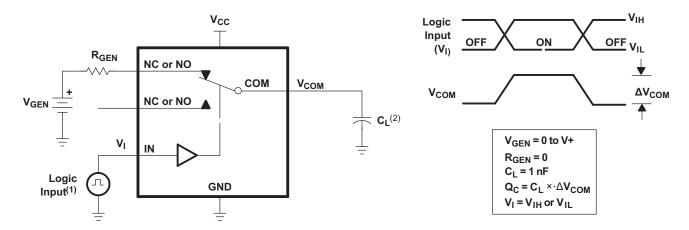



Figure 24. Crosstalk (X_{TALK})

A. All input pulses are supplied by generators having the following characteristics:

PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.

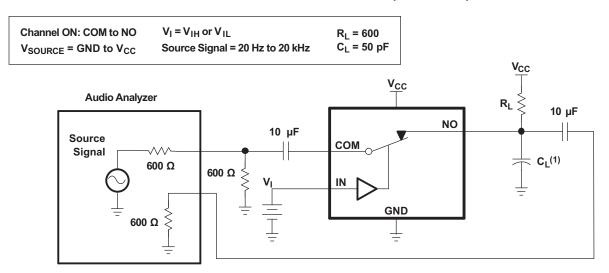

B. C_L includes probe and jig capacitance.

Figure 25. Charge Injection (Q_C)

Copyright © 2007–2015, Texas Instruments Incorporated

Sub

A. C_L includes probe and jig capacitance.

Figure 26. Total Harmonic Distortion (THD)

Submit Documentation Feedback

8 Detailed Description

8.1 Overview

The TS3A44159 is a bidirectional 4-channel single-pole double-throw (SPDT) analog switch with two control inputs, which is designed to operate from 1.65 V to 4.3 V. This device is also known as a 2-channel, double-pole, double-throw (DPDT) configuration. It offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature that prevents signal distortion during the transferring of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

8.2 Functional Block Diagram

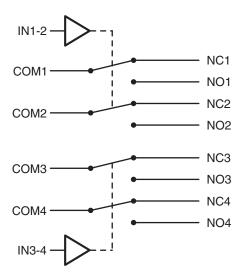


Figure 27. Logic Diagram

8.3 Feature Description

The TS3A44159 is a bidirectional device that has two sets of two single-pole double-throw switches. The four channels of the switch are contorled by two digital signals; one digital contorl for each set of two single-pole double-throw switches.

8.4 Device Functional Modes

Table 1. Function Table

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

9.2 Typical Application

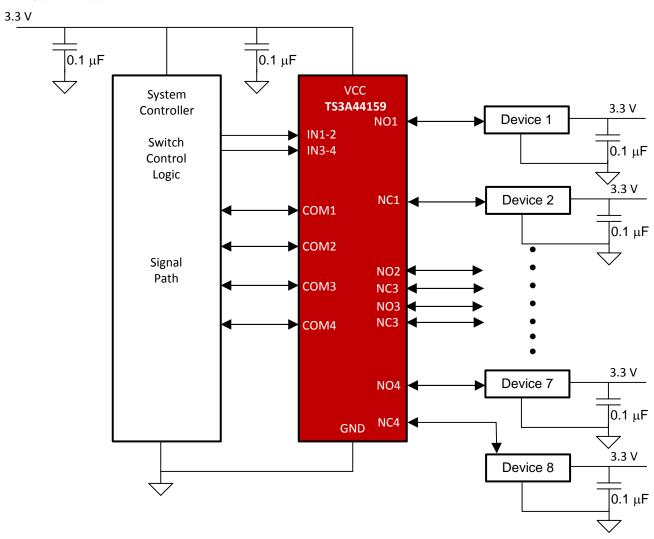


Figure 28. Typical Application Diagram

9.2.1 Design Requirements

Ensure that all of the signals passing through the switch are with in the specified ranges to ensure proper performance.

Table 2. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUES
Analog Voltage	4.3 V
Digital Input Voltage	4.3 V

9.2.2 Detailed Design Procedure

The TS3A44159 can be properly operated without any external components. However, TI recommends to connect unused pins to the ground through a $50-\Omega$ resistor to prevent signal reflections back into the device. TI also recommends that the digital control pins (INX) be pulled up to VCC or down to GND to avoid undesired switch positions that could result from the floating pin.

9.2.3 Application Curve

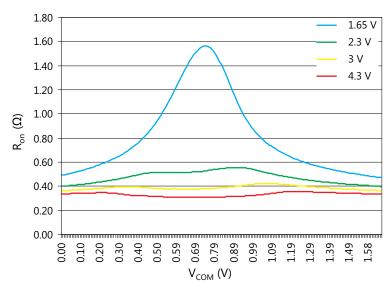


Figure 29. R_{on} vs V_{COM} (All Voltages)

10 Power Supply Recommendations

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence V_{CC} on first, followed by NO, NC, or COM. Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V_{CC} supply to other components. A 0.1- μ F capacitor, connected from V_{CC} to GND, is adequate for most applications.

11 Layout

11.1 Layout Guidelines

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

11.2 Layout Example



Figure 30. PCB Layout Example

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

28-Feb-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS3A44159PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YC4159	Samples
TS3A44159PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YC4159	Samples
TS3A44159RGTR	ACTIVE	QFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ZWH	Samples
TS3A44159RGTRG4	ACTIVE	QFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ZWH	Samples
TS3A44159RSVR	ACTIVE	UQFN	RSV	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ZWH	Samples
TS3A44159RSVRG4	ACTIVE	UQFN	RSV	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ZWH	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

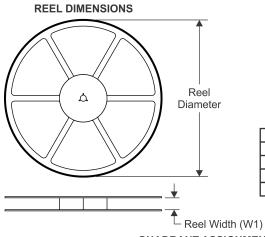
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

28-Feb-2014

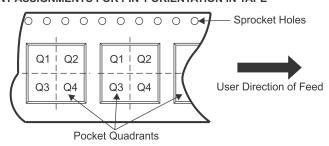
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

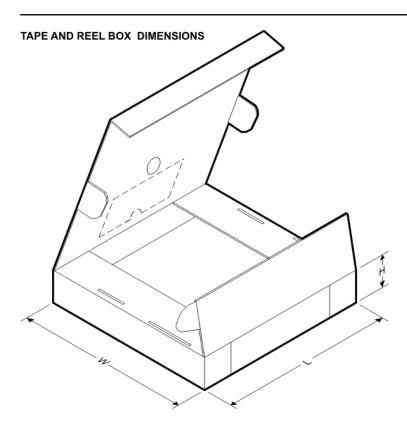
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 27-Feb-2014


TAPE AND REEL INFORMATION

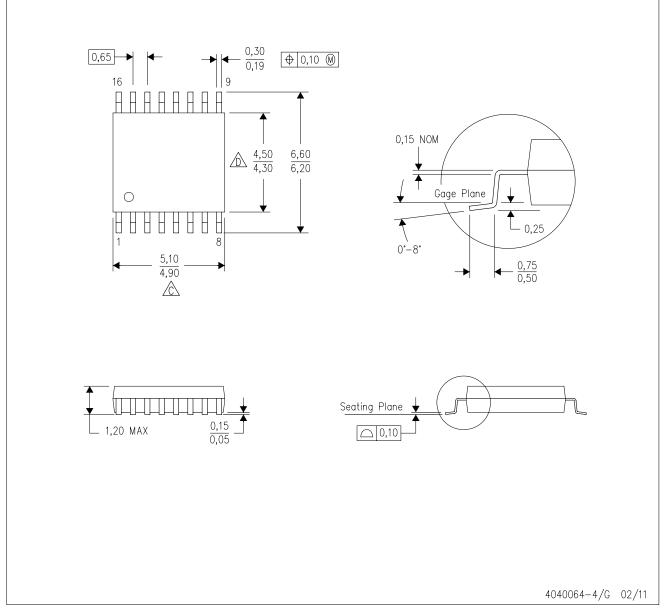
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are norminal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3A44159PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TS3A44159RGTR	QFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
TS3A44159RSVR	UQFN	RSV	16	3000	180.0	12.4	2.1	2.9	0.75	4.0	12.0	Q1
TS3A44159RSVR	UQFN	RSV	16	3000	177.8	12.4	2.0	2.8	0.7	4.0	12.0	Q1

www.ti.com 27-Feb-2014



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3A44159PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
TS3A44159RGTR	QFN	RGT	16	3000	346.0	346.0	35.0
TS3A44159RSVR	UQFN	RSV	16	3000	203.0	203.0	35.0
TS3A44159RSVR	UQFN	RSV	16	3000	202.0	201.0	28.0

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

RGT (S-PVQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD 3,15 2,85 - A В 3,15 2,85 PIN 1 INDEX AREA TOP AND BOTTOM 0,20 REF. SEATING PLANE 0,08 0,05 0,00 Ċ 16 THERMAL PAD SIZE AND SHAPE SHOWN ON SEPARATE SHEET

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

12

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.

13

- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

16X $\frac{0,30}{0,18}$

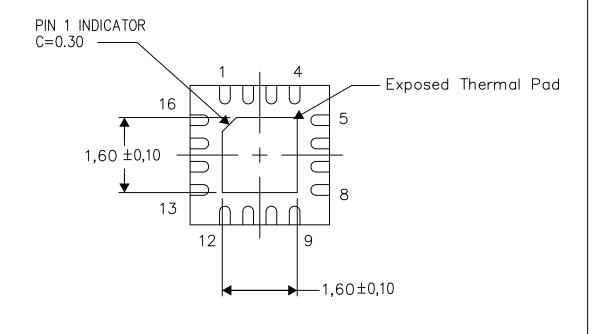
0,50

0,10 M C A B 0,05 M C

4203495/H 10/11

F. Falls within JEDEC MO-220.

RGT (S-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

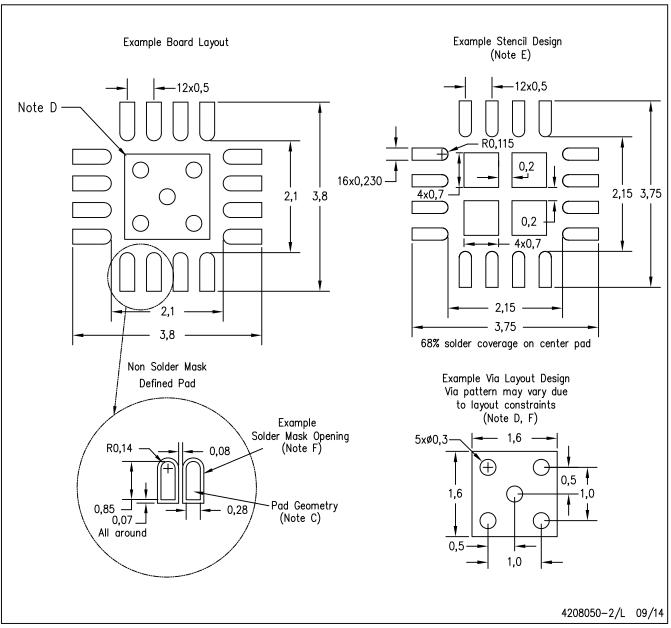
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

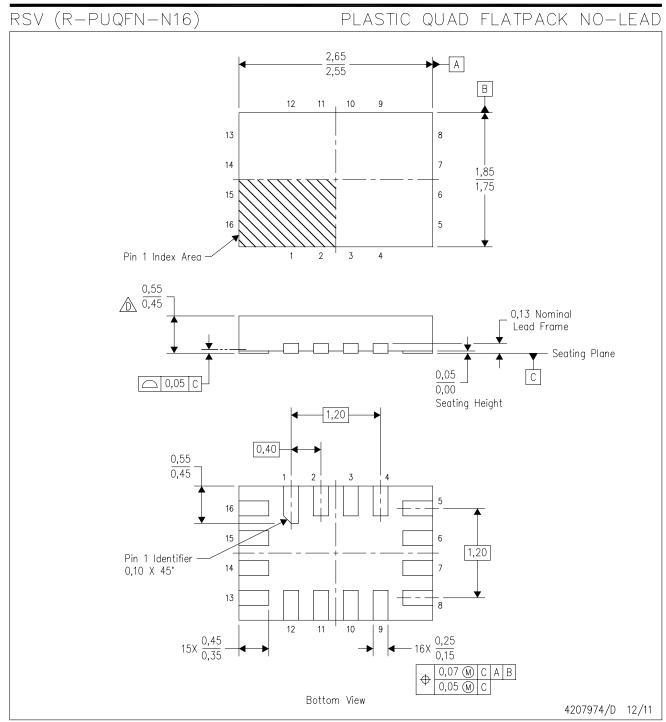
Bottom View

Exposed Thermal Pad Dimensions


4206349-3/W 10/14

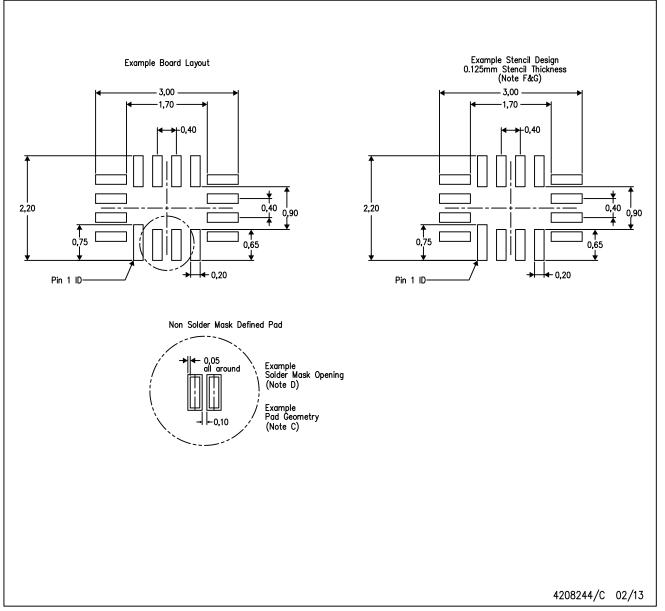
NOTE: All linear dimensions are in millimeters

RGT (S-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- This package complies to JEDEC MO-288 variation UFHE, except minimum package thickness.

RSV (R-PUQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A.

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com