186 Mildly Activated Rosin Liquid Flux

Kester 186, under MIL-F-14256, was QPL approved as Type RMA. Although the fluxing ability approaches that of Type RA flux, the flux residue after soldering is non-corrosive and non-conductive. 186 rosin flux has been developed for use in critical applications where difficult assemblies are to be soldered, but process requirements stipulate use of Type RMA flux. This flux possess high thermal stability for soldering multi-layer assemblies which require a high preheat temperature. Exposure to high preheat temperatures does not degrade solubility of the residue in normal cleaning solvents. There is no surface insulation resistance degradation caused by the flux residue. The use of a minimum of ionic activating agents and the inactive nature of the residue permits leaving the residue on circuit board assemblies for many applications. The flux residue is also moisture and fungus resistant.

Performance Characteristics:

- High thermal stability
- Improves soldering performance
- Eliminates the need and expense of cleaning
- Classified as ROL0 per J-STD-004

RoHS Compliance

Kester does not determine any applicable Restriction of Hazardous Substances (RoHS) exemptions for our lead containing products at the user level.

2.3.13

Specific Gravity: 0.879 ± 0.005 Anton Paar DMA @ 25°C

Percent Solids (typical): 36% Tested to J-STD-004, IPC-TM-650, Method 2.3.34 Acid Number (typical): 55.5 ± 7.8 mg Flash Point: 18° C (64° F) KOH/g of flux Tested to J-STD-004, IPC-TM-650, Method

Reliability Properties

Copper Mirror Corrosion: Low Tested to J-STD-004, IPC-TM-650, Method

Corrosion Test: Low Tested to J-STD-004, IPC-TM-650, Method

Silver Chromate: Pass Tested to J-STD-004, IPC-TM-650, Method Chloride and Bromides: 0.02% Tested to J-STD-004, IPC-TM-650, Method 2.3.35

Fluorides by Spot Test: Pass Tested to J-STD-004, IPC-TM-650, Method 2.3.35.1

	Blank	186 PD	186 PU
Day 1	5.0*10 ⁹ Ω	3.1*10 ⁹ Ω	5.2*10 ⁹ Ω
Day 4	5.8*10 ⁹ Ω	4.9*10 ⁹ Ω	6.8*10 ⁹ Ω
Day 7	6.3*10 ⁹ Ω	5.5*10 ⁹ Ω	7.2*10 ⁹ Ω

Surface Insulation Resistivity (SIR): Pass

Tested to J-STD-004, IPC-TM-650, Method 2.6.3.3

Application Notes

Flux Application

186 can be applied to circuit boards by a foam or dip process. An air knife after the flux tank is recommended to remove excess flux from the circuit board and prevent dripping on the preheated surface. A spray application can be used if the spray system can handle a high solids flux (36%).

Process Considerations

The wave conveyor speed should be adjusted to achieve the contact time. Dwell time for Sn63Pb37 is typically 2-4 seconds. Contact time fort lead-free alloys are typically 4-8 seconds. Adjust the preheat settings to achieve the proper preheat temperature. The optimum preheat temperature for most circuit assemblies is 90-105°C (194-221°F) as measured on the top or component side of the printed circuit board. This will be the same for all alloys.

Flux Control

Specific gravity $(0.879 \pm 0.005 \text{ Anton Paar DMA} \oplus 25^{\circ}\text{C})$ is normally the most reliable method to control the flux concentration of rosin-based fluxes. To check concentration, a hydrometer should be used. Control of the flux in the foam flux tank during use is necessary for assurance of consistent flux distribution on the circuit boards. The complex nature of the solvent system for the flux makes it imperative that Kester 120 Thinner be used to replace evaporative losses. When excessive debris from circuit boards, such as board fibers and from the air line build up in the flux tank, these particulates will redeposit on the circuit boards which may create a build up of residues on probe test pins. It is, therefore, necessary to clean the tank and then replenish it with fresh flux when excessive debris accumulates in the flux tank.

Cleaning

186 residues are non-conducive, non-corrosive and do not require removal in most applications. If residue removal is required, call Kester Technical Support.

Storage, Handling and Shelf Life

186 is flammable. Store away from sources of ignition. Shelf life is 1-year from the date of manufacture when handled properly and held at 10-25°C (50-77°F).

Health and Safety

This product, during handling or use, may be hazardous to your health or the environment. Read the Safety Data Sheet and warning label before using this product.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com