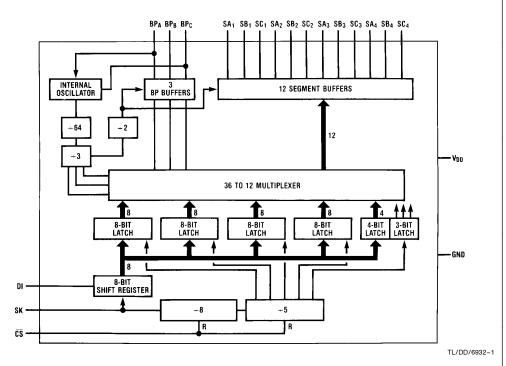
COP472-3

COP472-3 Liquid Crystal Display Controller

Literature Number: SNOSBQ3

COP472-3 Liquid Crystal Display Controller


General Description

The COP472–3 Liquid Crystal Display (LCD) Controller is a peripheral member of the COPSTM family, fabricated using CMOS technology. The COP472-3 drives a multiplexed liquid crystal display directly. Data is loaded serially and is held in internal latches. The COP472-3 contains an on-chip oscillator and generates all the multi-level waveforms for backplanes and segment outputs on a triplex display. One COP472-3 can drive 36 segments multiplexed as 3 \times 12 (4½ digit display). Two COP472-3 devices can be used together to drive 72 segments (3 \times 24) which could be an 8½ digit display.

Features

- Direct interface to TRIPLEX LCD
- Low power dissipation (100 µW typ.)
- Low cost
- Compatible with all COPS processors
- Needs no refresh from processor
- On-chip oscillator and latches
- Expandable to longer displays
- Operates from display voltage
- MICROWIRE™ compatible serial I/O
- 20-pin Dual-In-Line package and 20-pin SO

Block Diagram

COPS™ and MICROWIRE™ are trademarks of National Semiconductor Corporation.

Absolute Maximum Ratings

Voltage at CS, DI, SK pins -0.3V to +9.5VVoltage at all other Pins -0.3V to $V_{DD} + 0.3V$ Operating Temperature Range 0°C to 70°C

Storage Temperature Lead Temp. (Soldering, 10 Seconds) -65° C to $+150^{\circ}$ C 300°C

DC Electrical Characteristics

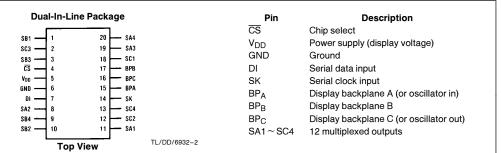
GND = 0V, V_{DD} = 3.0V to 5.5V, T_A = 0°C to 70°C (depends on display characteristics)

Parameter	Conditions	Min	Max	Units
Power Supply Voltage, V _{DD}		3.0	5.5	Volts
Power Supply Current, I _{DD} (Note 1)	V _{DD} =5.5V		250	μΑ
	V _{DD} =3V		100	μΑ
Input Levels				
DI, SK, CS				
V _{IL}			0.8	Volts
V _{IH}		0.7 V _{DD}	9.5	Volts
BPA (as Osc. in)				
V _{IL}			0.6	Volts
V _{IH}		V _{DD} -0.6	V _{DD}	Volts
Output Levels, BPC (as Osc. Out)				
V_{OL}			0.4	Volts
V _{OH}		V _{DD} -0.4	V _{DD}	Volts
Backplane Outputs (BPA, BPB, BPC)				
$V_{BPA, BPB, BPC}$ ON	During	$V_{DD}-\Delta V$	V_{DD}	Volts
V _{BPA, BPB, BPC} OFF	BP+ Time	1/ ₃ V _{DD} – ΔV	$\frac{1}{3}$ V _{DD} + Δ V	Volts
V _{BPA, BPB, BPC} ON	During	0	ΔV	Volts
V _{BPA, BPB, BPC} OFF	BP- Time	$^{2}/_{3}$ $V_{DD} - \Delta V$	$^{2}/_{3}$ $V_{DD} + \Delta V$	Volts
Segment Outputs (SA ₁ ∼ SA ₄)				
V _{SEG} ON	During	0	ΔV	Volts
V _{SEG} OFF	BP+ Time	$^{2}/_{3}$ $V_{DD} - \Delta V$	$^{2}/_{3}$ $V_{DD} + \Delta V$	Volts
V _{SEG} ON	During	$V_{DD}-\Delta V$	V _{DD}	Volts
V _{SEG} OFF	BP- Time	$^{1}/_{3}V_{DD}-\Delta V$	$\frac{1}{3}$ $V_{DD} + \Delta V$	Volts
Internal Oscillator Frequency		15	80	kHz
Frame Time (Int. Osc. ÷ 192)		2.4	12.8	ms
Scan Frequency (1/T _{SCAN})		39	208	Hz
SK Clock Frequency		4	250	kHz
SK Width		1.7		μs
DI				
Data Setup, t _{SETUP}		1.0		μs
Data Hold, t _{HOLD}		100		ns
<u>CS</u>				
^t SETUP		1.0		μs
thold		1.0		μs
Output Loading Capacitance			100	pF

Note 1: Power supply current is measured in stand-alone mode with all outputs open and all inputs at VDD. Note 2: $\Delta V\!=\!0.05V_{DD}.$

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.


 $\begin{array}{ll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{Lead Temperature} & \\ \mbox{(Soldering, 10 seconds)} & 300^{\circ}\mbox{C} \\ \end{array}$

DC Electrical Characteristics

GND = 0V, V_{DD} = 3.0V to 5.5V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$ (depends on display characteristics)

Parameter	Conditions	Min	Max	Units	
Power Supply Voltage, V _{DD}		3.0	5.5	Volts	
Power Supply Current, I _{DD} (Note 1)	V _{DD} =5.5V		300	μΑ	
	V _{DD} =3V		120	μΑ	
Input Levels					
DI, SK, CS					
V _{IL}		0.71/	0.8	Volts	
V _{IH}		0.7 V _{DD}	9.5	Volts	
BPA (as Osc. In)				.,,,,,	
V _{IL}		.,	0.6	Volts	
V _{IH}		V _{DD} -0.6	V _{DD}	Volts	
Output Levels, BPC (as Osc. Out)					
V _{OL}			0.4	Volts	
V _{OH}		V _{DD} -0.4	V _{DD}	Volts	
Backplane Outputs (BPA, BPB, BPC)					
V _{BPA, BPB, BPC} ON	During	$V_{DD}-\Delta V$	V _{DD}	Volts	
V _{BPA, BPB, BPC} OFF	BP+ Time	$^{1}/_{3}$ $V_{DD} - \Delta V$	1/ ₃ V _{DD} + ΔV	Volts	
V _{BPA, BPB, BPC} ON	During	0	ΔV	Volts	
V _{BPA, BPB, BPC} OFF	BP- Time	$^{2}/_{3}$ $V_{DD} - \Delta V$	$^{2}/_{3}$ $V_{DD} + \Delta V$	Volts	
Segment Outputs (SA ₁ ∼ SA ₄)					
V _{SEG} ON	During	0	ΔV	Volts	
V _{SEG} OFF	BP+ Time	$^{2}/_{3}$ $V_{DD} - \Delta V$	$^{2}/_{3}$ $V_{DD} + \Delta V$	Volts	
V _{SEG} ON	During	$V_{DD}-\Delta V$	V _{DD}	Volts	
V _{SEG} OFF	BP- Time	$^{1}/_{3}V_{DD}-\Delta V$	$\frac{1}{3}$ V _{DD} + Δ V	Volts	
Internal Oscillator Frequency		15	80	kHz	
Frame Time (Int. Osc. ÷ 192)		2.4	12.8	ms	
Scan Frequency (1/T _{SCAN})		39	208	Hz	
SK Clock Frequency		4	250	kHz	
SK Width		1.7		μs	
DI					
Data Setup, t _{SETUP}		1.0		μs	
Data Hold, t _{HOLD}		100		ns	
<u>CS</u>					
^t SETUP		1.0		μs	
^t HOLD		1.0		μs	
Output Loading Capacitance			100	pF	

Note 1: Power supply current is measured in stand-alone mode with all outputs open and all inputs at V_{DD} . Note 2: $\Delta V = 0.05 \ V_{DD}$.

Order Number COP472MW-3 or COP472N-3 See NS Package Number M20A or N20A

FIGURE 2. Connection Diagram

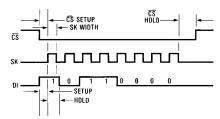


FIGURE 3. Serial Load Timing Diagram

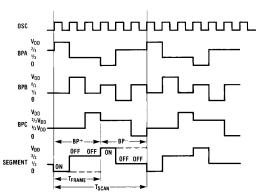


FIGURE 4. Backplane and Segment Waveforms

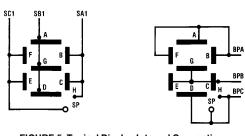


FIGURE 5. Typical Display Internal Connections Epson LD-370 TL/DD/6932-5

TL/DD/6932-4

TL/DD/6932-3

Functional Description

The COP472-3 drives 36 bits of display information organized as twelve segments and three backplanes. The COP472-3 requires 40 information bits: 36 data and 4 control. The function of each control bit is described below. Display information format is a function of the LCD interconnections. A typical segment/backplane configuration is illustrated in *Figure 5*, with this configuration the COP472-3 will drive 4 digits of 9 segments.

To adapt the COP472-3 to any LCD display configuration, the segment/backplane multiplex scheme is illustrated in Table I

Two or more COP472-3 chips can be cascaded to drive additional segments. There is no limit to the number of COP472-3's that can be used as long as the output loading capacitance does not exceed specification.

TABLE I. COP472-3 Segment/Backplane Multiplex Scheme

Multiplex Scheme						
Bit Number Segment, Backplane		Data to Numeric Display				
1	SA1, BPC	SH				
2	SB1, BPB	SG				
3	SC1, BPA	SF				
4	SC1, BPB	SE	Digit 1			
5	SB1, BPC	SD	Digit i			
6	SA1, BPB	SC				
7	SA1, BPA	SB				
8	SB1, BPA	SA				
9	SA2, BPC	SH				
10	SB2, BPB	SG				
11	SC2, BPA	SF				
12	SC2, BPB	SE	Digit 2			
13	SB2, BPC	SD	Digit 2			
14	SA2, BPB	SC				
15	SA2, BPA	SB				
16	SB2, BPA	SA				
17	SA3, BPC	SH				
18	SB3, BPB	SG				
19	SC3, BPA	SF				
20	SC3, BPB	SE	Digit 3			
21	SB3, BPC	SD	Digit o			
22	SA3, BPB	SC				
23	SA3, BPA	SB				
24	SB3, BPA	SA				
25	SA4, BPC	SH				
26	SB4, BPB	SG				
27	SC4, BPA	SF				
28	SC4, BPB	SE	Digit 4			
29	SB4, BPC	SD	Digit 4			
30	SA4, BPB	SC				
31	SA4, BPA	SB				
32	SB4, BPA	SA				
33	SC1, BPC	SPA	Digit 1			
34	SC2, BPC	SP2	Digit 2			
35	SC3, BPC	SP3	Digit 3			
36	SC4, BPC	SP4	Digit 4			
37	not used					
38	Q6					
39	Q7					
40	SYNC					

SEGMENT DATA BITS

Data is loaded in serially, in sets of eight bits. Each set of segment data is in the following format:

1								
	SA	l SR	l sc	l sd	SF	SF	SG	SH
	- C/ (00	, 50	00		, J	, Ju	J 011

Data is shifted into an eight bit shift register. The first bit of the data is for segment H, digit 1. The eighth bit is segment A, digit 1. A set of eight bits is shifted in and then loaded into the digit one latches. The second set of 8 bits is loaded into digit two latches. The third set into digit three latches, and the fourth set is loaded into digit four latches.

CONTROL BITS

The fifth set of 8 data bits contains special segment data and control data in the following format:

SYNC	Q7	Q6	Х	SP4	SP3	SP2	SP1

The first four bits shifted in contain the special character segment data. The fifth bit is not used. The sixth and seventh bits program the COP472-3 as a stand alone LCD driver or as a master or slave for cascading COP472-3's. BPC of the master is connected to BPA of each slave. The following table summarizes the function of bits six and seven:

Q7	Q6	Function	BPC Output	BPA Output
1	1	Slave	Backplane Output	Oscillator Input
0	1	Stand Alone	Backplane Output	Backplane Output
1	0	Not Used	Internal	Oscillator
0	0	Master	Osc. Output Internal Osc. Output	Input Backplane Output

The eighth bit is used to synchronize two COP472-3's to drive an $81\!/_{\!2}\text{-digit}$ display.

LOADING SEQUENCE TO DRIVE A 41/2-DIGIT DISPLAY

Steps:

- 1. Turn $\overline{\text{CE}}$ low.
- 2. Clock in 8 bits of data for digit 1.
- 3. Clock in 8 bits of data for digit 2.
- 4. Clock in 8 bits of data for digit 3.
- 5. Clock in 8 bits of data for digit 4.
- Clock in 8 bits of data for special segment and control function of BPC and BPA.

0 0 1 1 1 SP4 SP3 SP2 SP1

7. Turn CS high.

Note: \overline{CS} may be turned high after any step. For example to load only 2 digits of data, do steps 1, 2, 3, and 7.

 $\overline{\text{CS}}$ must make a high to low transition before loading data in order to reset internal counters.

LOADING SEQUENCE TO DRIVE AN 8½-DIGIT DISPLAY

Two or more COP472-3's may be connected together to drive additional segments. An eight digit multiplexed display is shown in *Figure 7*. The following is the loading sequence to drive an eight digit display using two COP472-3's. The right chip is the master and the left the slave.

Steps:

- 1. Turn $\overline{\text{CS}}$ low on both COP472-3's.
- 2. Shift in 32 bits of data for the slave's four digits.
- Shift in 4 bits of special segment data: a zero and three ones.

This synchronizes both the chips and BPA is oscillator input. Both chips are now stopped.

- 4. Turn CS high to both chips.
- 5. Turn CS low to master COP472-3.
- 6. Shift in 32 bits of data for the master's 4 digits.
- 7. Shift in four bits of special segment data, a one and three zeros.

This sets the master COP472-3 to BPA as a normal backplane output and BPC as oscillator output. Now both the chips start and run off the same oscillator.

8. Turn CS high.

The chips are now synchronized and driving 8 digits of display. To load new data simply load each chip separately in the normal manner, keeping the correct status bits to each COP472-3 (0110 or 0001).

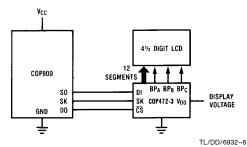


FIGURE 6. System Diagram - 4½ Digit Display

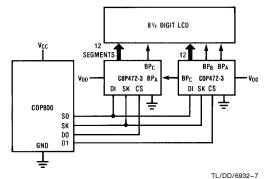
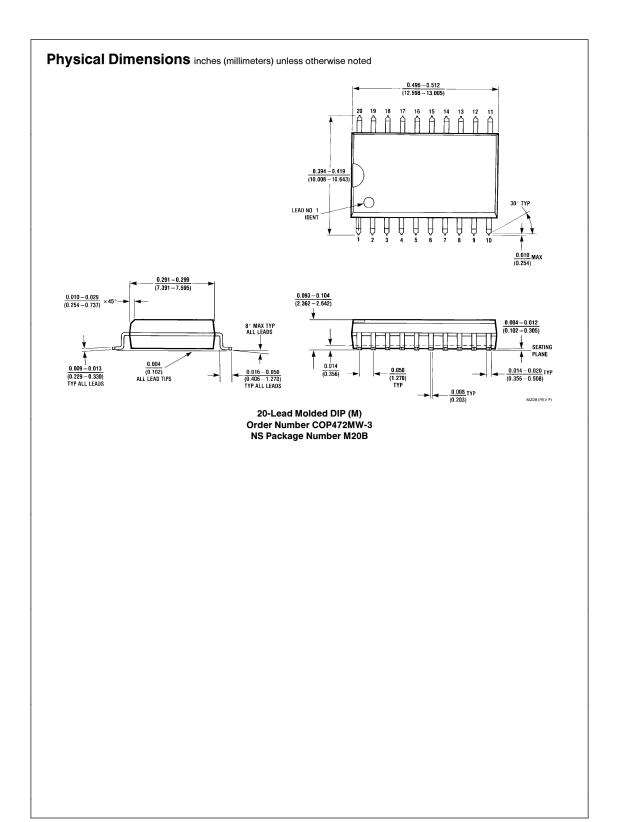
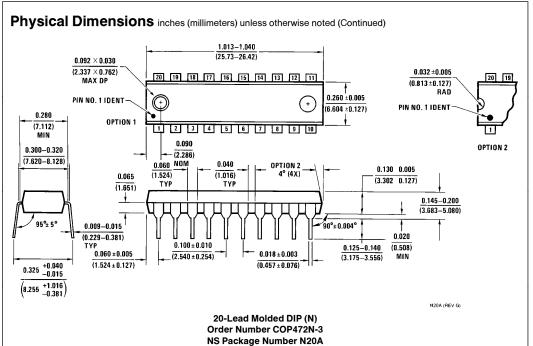




FIGURE 7. System Diagram - 81/2 Digit Display

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

http://www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Fax: +49 (0) 180-530 so so Email: europe.support@nsc.com Deutsch Tel: +49 (0) 180-530 85 85 English Tel: +49 (0) 180-532 78 32 Français Tel: +49 (0) 180-532 95 58 Italiano Tel: +49 (0) 180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2308
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications
----------	--------------

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors <u>www.ti.com/omap</u>

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com