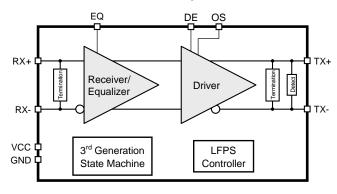


# **USB 3.0 Single Channel Redriver with Equalization**


Check for Samples: TUSB501

#### **FEATURES**

- Aggressive Low-Power Architecture (Typ):
  - 126 mW Active Power
  - 20 mW in U2/U3
  - 3 mW with No Connection
- Automatic LFPS DE Control
- Excellent Jitter and Loss Compensation
  - 32 inches of FR4 4 mil Stripline
  - 3 m of 30 AWG cable
- Integrated Termination
- Small 2 x 2 mm QFN Package
- Selectable Receiver Equalization, Transmitter De-Emphasis and Output Swing
- Hot-Plug Capable
- ESD Protection ±5 kV HBM

#### **APPLICATIONS**

 Cell Phones, Computers, Docking Stations, TVs, Active Cables, Backplanes



#### **DESCRIPTION**

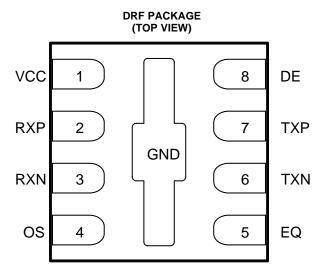
The TUSB501 is a 3<sup>rd</sup> generation 3.3-V USB 3.0 single-channel redriver. When 5 Gbps SuperSpeed USB signals travel across a PCB or cable, signal integrity degrades due to loss and inter-symbol interference. The TUSB501 recovers incoming data by applying equalization that compensates channel loss, and drives out signals with a high differential voltage. This extends the possible channel length, and enables systems to pass USB 3.0 compliance. The TUSB501 advanced state machine makes it transparent to hosts and devices.

After power up, the TUSB501 periodically performs receiver detection on the TX pair. If it detects a SuperSpeed USB receiver, RX termination becomes enabled, and the TUSB501 is ready to redrive.

The receiver equalizer has three gain settings that are controlled by pin EQ: 3 dB, 6 dB, and 9 dB. This should be set based on amount of loss before the TUSB501. Likewise, the output driver supports configuration of De-Emphasis and Output Swing (pins DE and OS). These settings allow the TUSB501 to be flexibly placed in the SuperSpeed USB path, with optimal performance.

Over previous generations, the TUSB501 features reduced power in all link states, a stronger OS option, improved receiver equalization settings, and an intelligent LFPS Controller. This controller senses the low frequency signals and automatically disables driver de-emphasis, for full USB 3.0 compliance.

The TUSB501 is packaged in a small 2 x 2 mm QFN, and operates through an industrial temperature range of  $-40^{\circ}$ C to  $85^{\circ}$ C.


M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.





These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.



#### **PIN FUNCTIONS**

|      | PIN         |                  | PIN                                                                                                          |  | DESCRIPTION |  |  |
|------|-------------|------------------|--------------------------------------------------------------------------------------------------------------|--|-------------|--|--|
| NAME | NO.         | ITPE             | DESCRIPTION                                                                                                  |  |             |  |  |
| RXP  | 2           |                  | Differential insultania for E. Chan ConnerCanad LICD signals                                                 |  |             |  |  |
| RXN  | 3           | Differential I/O | Differential input pair for 5 Gbps SuperSpeed USB signals.                                                   |  |             |  |  |
| TXN  | 6           | Differential I/O | Differential output pair for 5 Chap CuparChapd LICD signals                                                  |  |             |  |  |
| TXP  | 7           |                  | Differential output pair for 5 Gbps SuperSpeed USB signals.                                                  |  |             |  |  |
| EQ   | 5           |                  | Sets the receiver equalizer gain. 3-state input with integrated pull-up and pull-down resistors.             |  |             |  |  |
| DE   | 8           | CMOS Input       | Sets the output de-emphasis gain. 3-state input with integrated pull-up and pull-down resistors.             |  |             |  |  |
| os   | 4           |                  | Sets the output swing (differential voltage amplitude). 2-state input with an integrated pull-down resistor. |  |             |  |  |
| VCC  | 1           | Power            | 3.3-V power supply                                                                                           |  |             |  |  |
| GND  | Thermal Pad | Fower            | Reference ground                                                                                             |  |             |  |  |



#### **DEVICE CONFIGURATION**

**Table 1. Control Pin Effects (Typical Values)** 

| PIN | DESCRIPTION         | LOGIC STATE | GAIN |
|-----|---------------------|-------------|------|
|     |                     | Low         | 3 dB |
| EQ  | Equalization Amount | Floating    | 6 dB |
|     |                     | High        | 9 dB |

| PIN | DESCRIPTION  | LOGIC STATE | OUTPUT DIFFERENTIAL VOLTAGE<br>FOR THE TRANSITION BIT |
|-----|--------------|-------------|-------------------------------------------------------|
| os  | Output Swing | Low         | 930 mV <sub>pp</sub>                                  |
| US  | Amplitude    | High        | 1300 mV <sub>pp</sub>                                 |

| PIN | DESCRIPTION           | LOGIC STATE | DE-EMPHASIS RATIO |               |  |
|-----|-----------------------|-------------|-------------------|---------------|--|
|     | DESCRIPTION           | LOGIC STATE | FOR OS = LOW      | FOR OS = HIGH |  |
|     |                       | Low         | 0 dB              | –2.6 dB       |  |
| DE  | De-Emphasis<br>Amount | Floating    | −3.5 dB           | −5.9 dB       |  |
|     | , anount              | High        | −6.2 dB           | -8.3 dB       |  |

<sup>(1)</sup> Typical values

#### **ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range (unless otherwise noted) (1)

|                                                                                               |                                     | MIN  | MAX            | UNIT |
|-----------------------------------------------------------------------------------------------|-------------------------------------|------|----------------|------|
| Supply voltage range (2)                                                                      | V <sub>CC</sub>                     | -0.5 | 4              | V    |
| Voltage range at any input or output terminal                                                 | Differential I/O                    | -0.5 | 4              | V    |
|                                                                                               | CMOS inputs                         | -0.5 | $V_{CC} + 0.5$ | V    |
|                                                                                               | Human body model (all pins) (3)     |      | ±5             |      |
| Electrostatic discharge  Human body model (all pins) (3)  Charged-device model (all pins) (4) | Charged-device model (all pins) (4) |      | ±1.5           | kV   |
| Storage temperature, T <sub>STG</sub>                                                         |                                     |      | 150            | °C   |
| Maximum junction temperature, T <sub>J</sub>                                                  |                                     |      | 105            | °C   |

<sup>(1)</sup> Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### THERMAL INFORMATION

|                         | Junction-to-ambient thermal resistance  Junction-to-case(top) thermal resistance  Junction-to-board thermal resistance  Junction-to-top characterization parameter  Junction-to-board characterization parameter | TUSB501 |       |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
|                         | THERMAL METRIC                                                                                                                                                                                                   | DRF     | UNITS |
| $\theta_{JA}$           | Junction-to-ambient thermal resistance                                                                                                                                                                           | 102.4   |       |
| $\theta_{JC(top)}$      | Junction-to-case(top) thermal resistance                                                                                                                                                                         | 90.3    |       |
| $\theta_{JB}$           | Junction-to-board thermal resistance                                                                                                                                                                             | 21.2    | 900   |
| ΨЈТ                     | Junction-to-top characterization parameter                                                                                                                                                                       | 70      | °C/W  |
| ΨЈВ                     | Junction-to-board characterization parameter                                                                                                                                                                     | 3.6     |       |
| θ <sub>JC(bottom)</sub> | Junction-to-case(bottom) thermal resistance                                                                                                                                                                      | 70.2    |       |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

<sup>(2)</sup> All voltage values are with respect to the GND terminals.

<sup>(3)</sup> Tested in accordance with JEDEC Standard 22, Test Method A114-B.

<sup>(4)</sup> Tested in accordance with JEDEC Standard 22, Test Method C101-A.



#### RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

|                 |                                | MIN | NOM | MAX | UNIT |
|-----------------|--------------------------------|-----|-----|-----|------|
| $V_{CC}$        | Main power supply              | 3   | 3.3 | 3.6 | V    |
| T <sub>A</sub>  | Operating free-air temperature | -40 |     | 85  | °C   |
| C <sub>AC</sub> | AC coupling capacitor          | 75  | 100 | 200 | nF   |

## **POWER SUPPLY CHARACTERISTICS**

over operating free-air temperature range (unless otherwise noted)

|                        | PARAMETER                          | TEST CONDITIONS                                             |  | TYP <sup>(1)</sup> | MAX <sup>(2)</sup> | UNIT |  |
|------------------------|------------------------------------|-------------------------------------------------------------|--|--------------------|--------------------|------|--|
| I <sub>CC-ACTIVE</sub> | Average estive current             | Link in U0 with SuperSpeed USB data transmission, OS = Low  |  | 38.1               |                    | A    |  |
|                        | Average active current             | Link in U0 with SuperSpeed USB data transmission, OS = High |  | 43.8               | 65                 | mA   |  |
| I <sub>CC-IDLE</sub>   | Average current in idle state      | Link has some activity, not in U0, OS = Low                 |  | 29.8               |                    | mA   |  |
| I <sub>CC-U2U3</sub>   | Average current in U2/U3           | Link in U2 or U3                                            |  | 6.1                |                    | mA   |  |
| I <sub>CC-NC</sub>     | Average current with no connection | No SuperSpeed USB device is connected to TXP, TXN           |  | 1.3                |                    | mA   |  |
| _                      | Bower Discipation in LIO           | OS = Low                                                    |  | 126                |                    | \/   |  |
| $P_D$                  | Power Dissipation in U0            | OS = High                                                   |  | 145                | 234                | mW   |  |

#### DC ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

| PARAMETER       |                               | TEST CONDITIONS                        | MIN TYP             | MAX | UNIT |
|-----------------|-------------------------------|----------------------------------------|---------------------|-----|------|
| 3-State         | CMOS Inputs (EQ, DE)          |                                        | 1                   |     |      |
| V <sub>IH</sub> | High-level input voltage      |                                        | 2.8                 |     | V    |
| V <sub>IM</sub> | Mid-level input voltage       |                                        | V <sub>CC</sub> / 2 |     | V    |
| V <sub>IL</sub> | Low-level input voltage       |                                        |                     | 0.6 | V    |
| $V_{F}$         | Floating voltage              | V <sub>IN</sub> = High impedance       | V <sub>CC</sub> / 2 |     | V    |
| R <sub>PU</sub> | Internal pull-up resistance   |                                        | 190                 |     | kΩ   |
| R <sub>PD</sub> | Internal pull-down resistance |                                        | 190                 |     | kΩ   |
| I <sub>IH</sub> | High-level input current      | V <sub>IN</sub> = 3.6 V                |                     | 36  | μΑ   |
| I <sub>IL</sub> | Low-level input current       | $V_{IN} = GND, V_{CC} = 3.6 \text{ V}$ | -36                 |     | μΑ   |
| 2-State         | CMOS Input (OS)               |                                        |                     |     |      |
| V <sub>IH</sub> | High-level input voltage      |                                        | 2                   |     | V    |
| V <sub>IL</sub> | Low-level input voltage       |                                        |                     | 0.5 | V    |
| V <sub>F</sub>  | Floating voltage              | V <sub>IN</sub> = High impedance       | GND                 |     | V    |
| R <sub>PD</sub> | Internal pull-down resistance |                                        | 270                 |     | kΩ   |
| I <sub>IH</sub> | High-level input current      | V <sub>IN</sub> = 3.6 V                |                     | 26  | μΑ   |
| I <sub>IL</sub> | Low-level input current       | V <sub>IN</sub> = GND                  | -1                  |     | μA   |

 $<sup>\</sup>begin{array}{ll} \hbox{(1)} & \hbox{TYP values use V}_{CC} = 3.3 \ \hbox{V, T}_{A} = 25 ^{\circ} \hbox{C.} \\ \hbox{(2)} & \hbox{MAX values use V}_{CC} = 3.6 \ \hbox{V, T}_{A} = -40 ^{\circ} \hbox{C.} \\ \end{array}$ 



# **AC ELECTRICAL CHARACTERISTICS**

over operating free-air temperature range (unless otherwise noted)

|                                                   | PARAMETER                                                     | TEST CONDITIONS                                                                                                          | MIN         | TYP   | MAX   | UNIT      |
|---------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------|-------|-------|-----------|
| Differential                                      | Receiver (RXP, RXN)                                           |                                                                                                                          |             |       | •     |           |
| V <sub>DIFF-pp</sub>                              | Input differential voltage swing                              | AC-coupled differential peak-to-peak signal                                                                              | 100         |       | 1200  | $mV_{pp}$ |
| V <sub>CM-RX</sub>                                | Common-mode voltage bias in the receiver (DC)                 |                                                                                                                          |             | 3.3   |       | V         |
| Z <sub>RX-DIFF</sub>                              | Differential input impedance (DC)                             | Present after a SuperSpeed USB device is detected on TXP/TXN                                                             | 72          | 91    | 120   | Ω         |
| Z <sub>RX-CM</sub>                                | Common-mode input impedance (DC)                              | Present after a SuperSpeed USB device is detected on TXP, TXN                                                            | 18          | 22.8  | 30    | Ω         |
| Z <sub>RX-HIGH-</sub><br>IMP-DC-POS               | Common-mode input impedance with termination disabled (DC)    | Present when no SuperSpeed USB device is detected on TXP, TXN.  Measured over the range of 0-500 mV with respect to GND. | 25          | 25 35 |       | kΩ        |
| V <sub>RX-LFPS-</sub><br>DET-DIFF-pp              | Low Frequency Periodic Signaling (LFPS) Detect Threshold      | Below the minimum is squelched                                                                                           | 100         |       | 300   | $mV_pp$   |
| Differential                                      | Transmitter (TXP, TXN)                                        |                                                                                                                          |             |       |       |           |
| \ /                                               | Transmitter differential voltage swing                        | OS = Low, No load                                                                                                        |             | 930   |       | > /       |
| V <sub>TX-DIFF-PP</sub>                           | (transition-bit)                                              | OS = High, No load                                                                                                       |             | 1300  |       | $mV_pp$   |
| V <sub>TX-DE-</sub>                               | Transmitter de-emphasis                                       | DE = Floating, OS = Low                                                                                                  |             | -3.5  |       | dB        |
| C <sub>TX</sub>                                   | TX input capacitance to GND                                   | At 2.5 GHz                                                                                                               |             | 1.25  |       | pF        |
| Z <sub>TX-DIFF</sub>                              | Differential impedance of the driver                          |                                                                                                                          | 75          | 93    | 125   | Ω         |
| Z <sub>TX-CM</sub>                                | Common-mode impedance of the driver                           | Measured with respect to AC ground over 0-500 mV                                                                         | 18.75 31.25 |       | 31.25 | Ω         |
| I <sub>TX-SC</sub>                                | TX short circuit current                                      | TX ± shorted to GND                                                                                                      |             |       | 60    | mA        |
| V <sub>CM-TX</sub>                                | Common-mode voltage bias in the transmitter (DC)              |                                                                                                                          | 1.2         |       | 2.5   | V         |
| V <sub>CM-TX-AC</sub>                             | AC common-mode voltage swing in active mode                   | Within U0 and within LFPS                                                                                                |             |       | 100   | $mV_{pp}$ |
| V <sub>TX-IDLE-</sub><br>DIFF -AC-pp              | Differential voltage swing during electrical idle             | Tested with a high-pass filter                                                                                           | 0           |       | 10    | $mV_pp$   |
| V <sub>TX-CM-</sub><br>DeltaU1-U0                 | Absolute delta of DC CM voltage during active and idle states | Restrict the test condition to meet 100 mV                                                                               |             |       | 100   | mV        |
| V <sub>TX-idle-diff-</sub><br>DC                  | DC electrical idle differential output voltage                | Voltage must be low pass filtered to remove any AC component                                                             | 0           |       | 12    | mV        |
| Differential                                      | Transmitter (TXP, TXN)                                        |                                                                                                                          |             |       |       |           |
| t <sub>R</sub> , t <sub>F</sub>                   | Output rise, fall time see Figure 4                           | 20%-80% of differential voltage measured 1 inch from the output pin                                                      |             | 80    |       | ps        |
| t <sub>RF-MM</sub>                                | Output Rise, Fall time mismatch                               | 20%-80% of differential voltage measured 1 inch from the output pin                                                      |             |       | 20    | ps        |
| t <sub>diff-LH</sub> ,<br>t <sub>diff-HL</sub>    | Differential propagation delay see Figure 2                   | De-emphasis = -3.5 dB propagation delay between 50% level at input and output                                            |             | 290   |       | ps        |
| t <sub>idleEntry</sub> ,<br>t <sub>idleExit</sub> | Idle entry and exit times see Figure 3                        |                                                                                                                          |             | 3.6   |       | ns        |



# **AC ELECTRICAL CHARACTERISTICS (continued)**

over operating free-air temperature range (unless otherwise noted)

| PARAMETER            |                                              | PARAMETER TEST CONDITIONS                                                                                                                   |   | TYP   | MAX | UNIT              |
|----------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---|-------|-----|-------------------|
| Timing               |                                              |                                                                                                                                             |   |       |     |                   |
| t <sub>READY</sub>   | Time from power applied until RX termination | Apply 0 V to VCC, connect<br>SuperSpeed USB termination to<br>TX±, apply 3.3 V to VCC, and<br>measure when Z <sub>RX-DIFF</sub> is enabled. | 9 |       | ms  |                   |
| Jitter               |                                              |                                                                                                                                             |   |       |     |                   |
| T <sub>JTX-EYE</sub> | Total jitter (1) (2)                         | EQ = Floating, OS = High,                                                                                                                   |   | 0.213 |     | UI <sup>(3)</sup> |
| D <sub>JTX</sub>     | Deterministic jitter (2)                     | DE = High                                                                                                                                   |   | 0.197 |     | UI <sup>(3)</sup> |
| $R_{JTX}$            | Random jitter (2) (4)                        | See Figure 1.                                                                                                                               |   | 0.016 |     | UI <sup>(3)</sup> |

- Includes R<sub>J</sub> at 10<sup>-12</sup>.
- Measured at the ends of reference channel in Figure 1 with K28.5 pattern,  $V_{ID}$  = 1000 m $V_{pp}$ , 5 Gbps, -3.5 dB de-emphasis from source.
- UI = 200 ps.
- (3) (4) R<sub>i</sub> calculated as 14.069 times the RMS random jitter for 10<sup>-12</sup> BER.

## PARAMETER MEASUREMENT INFORMATION

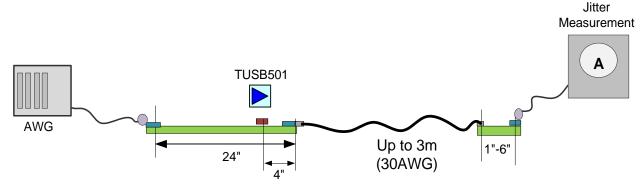



Figure 1. Jitter Measurement Setup

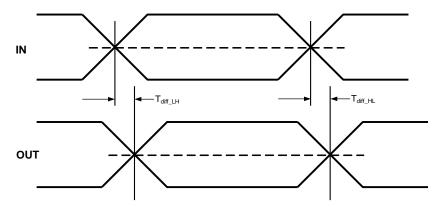



Figure 2. Propagation Delay



# PARAMETER MEASUREMENT INFORMATION (continued)

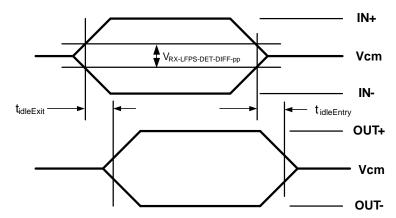



Figure 3. Electrical Idle Mode Exit and Entry Delay

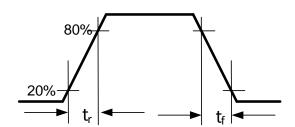



Figure 4. Output Rise and Fall Times

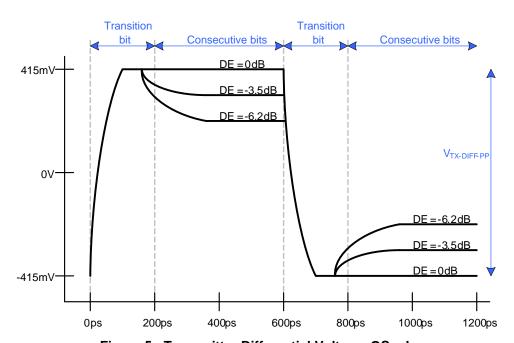



Figure 5. Transmitter Differential Voltage, OS = L

## PARAMETER MEASUREMENT INFORMATION (continued)

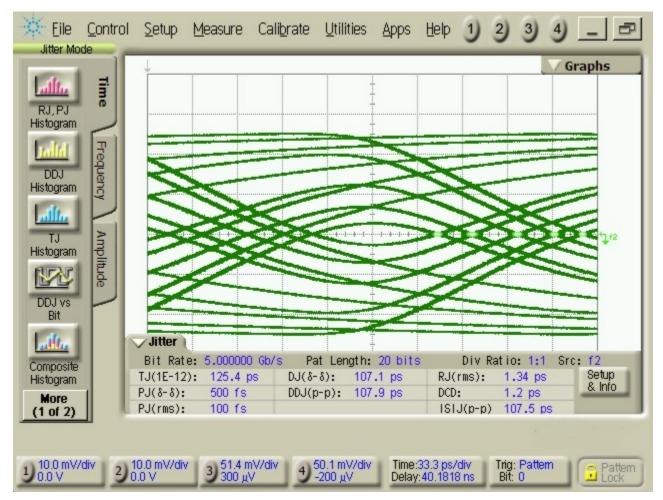



Figure 6. Input for Typical Output Measurement at TUSB501 at  $T_A = 25^{\circ}C$ 



#### PARAMETER MEASUREMENT INFORMATION (continued)

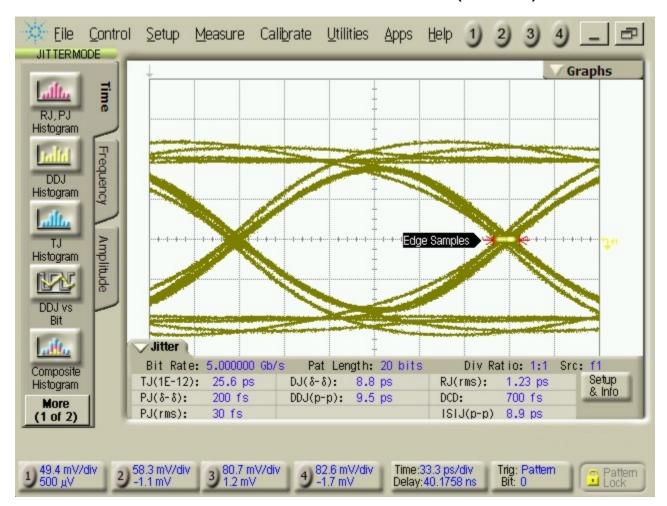



Figure 7. Typical Output Eye for Jitter Measurement Setup in Figure 1 at  $T_A = 25^{\circ}$ C, DE = HIGH, OS = HIGH, EQ = NC

## SLLSEG5A - AUGUST 2013-REVISED AUGUST 2013



| R | F۱ | /ISI | C | N | НΙ | ST | 'n | R١ | ۷ |
|---|----|------|---|---|----|----|----|----|---|
|   |    |      |   |   |    |    |    |    |   |

| Ch | nanges from Original (August 2013) to Revision A | Page |
|----|--------------------------------------------------|------|
| •  | Changed from Product Preview to Production Data  | 1    |



# **PACKAGE OPTION ADDENDUM**

14-Aug-2013

#### PACKAGING INFORMATION

| Orderable Device Status |        | Package Type | _       | Pins | •    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|-------------------------|--------|--------------|---------|------|------|----------------------------|------------------|---------------------|--------------|----------------|---------|
|                         | (1)    |              | Drawing |      | Qty  | (2)                        |                  | (3)                 |              | (4/5)          |         |
| TUSB501DRFR             | ACTIVE | WSON         | DRF     | 8    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | T501           | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

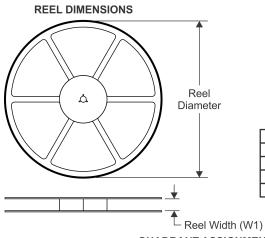
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

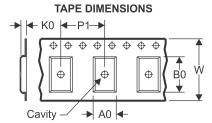
**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

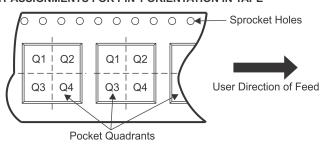
- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# PACKAGE MATERIALS INFORMATION

www.ti.com 15-Aug-2013


# TAPE AND REEL INFORMATION





|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

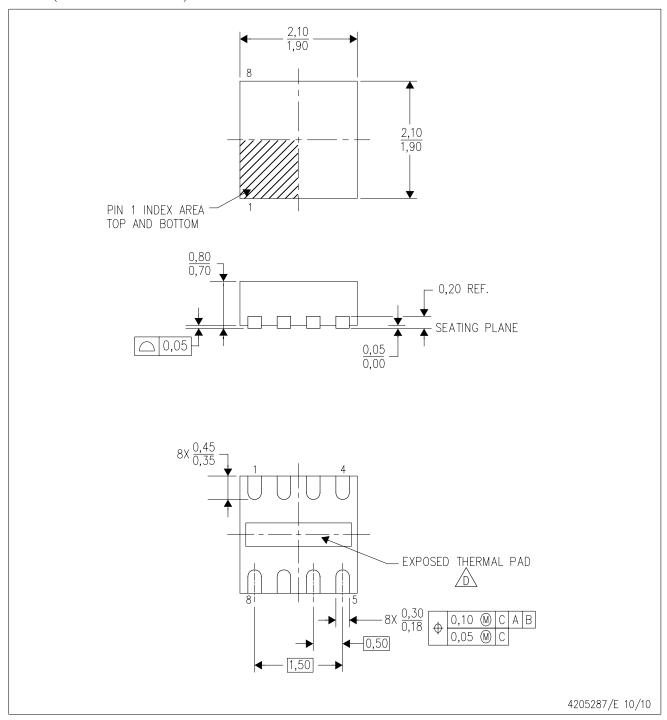
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal

| Device      | Package<br>Type | Package<br>Drawing |   |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TUSB501DRFR | WSON            | DRF                | 8 | 3000 | 180.0                    | 8.4                      | 2.3        | 2.3        | 1.15       | 4.0        | 8.0       | Q2               |

www.ti.com 15-Aug-2013




#### \*All dimensions are nominal

| Ī | Device      | Package Type | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |      |
|---|-------------|--------------|------|-----|-------------|------------|-------------|------|
|   | TUSB501DRFR | WSON         | DRF  | 8   | 3000        | 210.0      | 185.0       | 35.0 |

# DRF (S-PWSON-N8)

# PLASTIC SMALL OUTLINE NO-LEAD

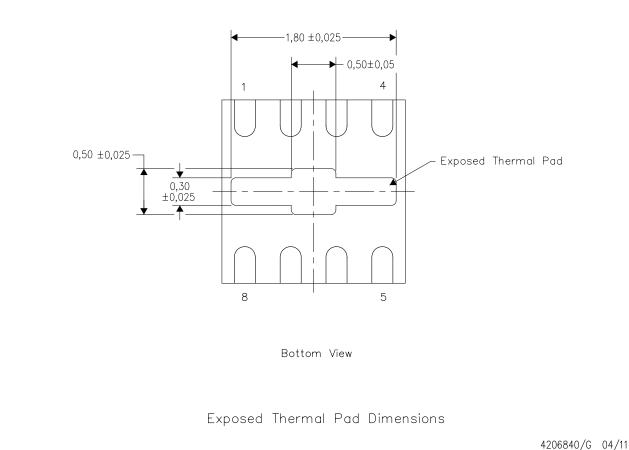


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- Ç. Quad Flatpack, No-Leads (QFN) package configuration.
- The Package thermal pad must be soldered to the board for thermal and mechanical performance. See product data sheet for details regarding the exposed thermal pad dimensions.
- E. Falls within JEDEC MO-229.



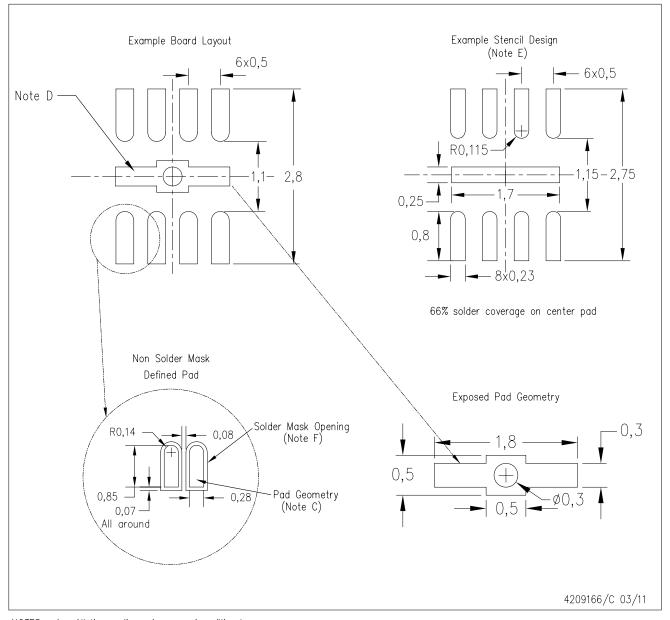
# DRF (S-PWSON-N8)


PLASTIC SMALL OUTLINE NO-LEAD

#### THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: A. All linear dimensions are in millimeters

# DRF (S-PWSON-N8)

# PLASTIC SMALL OUTLINE NO-LEAD



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <a href="https://www.ti.com">http://www.ti.com</a>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <a href="www.ti.com/omap">www.ti.com/omap</a> TI E2E Community <a href="e2e.ti.com">e2e.ti.com</a>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

# AMEYA360 Components Supply Platform

# **Authorized Distribution Brand:**

























# Website:

Welcome to visit www.ameya360.com

# Contact Us:

# > Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

# > Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

# Customer Service :

Email service@ameya360.com

# Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com