

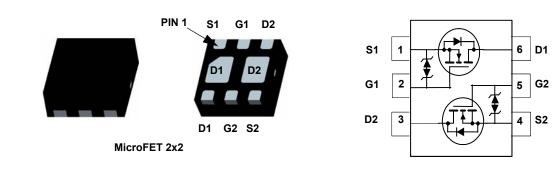
July 2014

FDMA1024NZ Dual N-Channel PowerTrench[®] MOSFET

20 V, 5.0 A, 54 mΩ

Features

- Max $r_{DS(on)}$ = 54 m Ω at V_{GS} = 4.5 V, I_D = 5.0 A
- Max $r_{DS(on)}$ = 66 m Ω at V_{GS} = 2.5 V, I_D = 4.2 A
- Max r_{DS(on)} = 82 mΩ at V_{GS} = 1.8 V, I_D = 2.3 A
- Max r_{DS(on)} = 114 mΩ at V_{GS} = 1.5 V, I_D = 2.0 A
- HBM ESD protection level = 1.6 kV (Note 3)
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- RoHS Compliant
- Free from halogenated compounds and antimony oxides


General Description

This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses.

The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Applications

- Baseband Switch
- Loadswitch
- DC-DC Conversion

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		20	V
V _{GS}	Gate to Source Voltage		±8	V
1	Drain Current -Continuous	(Note 1a)	5.0	^
D	-Pulsed		6.0	— A
P _D	Power Dissipation	(Note 1a)	1.4	W
	Power Dissipation (Note 1b)		0.7	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	86 (Single Operation)	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	173 (Single Operation)	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	69 (Dual Operation)	C/VV
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1d)	151 (Dual Operation)	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
024	FDMA1024NZ	MicroFET 2X2	7 "	8 mm	3000 units

Ð
Ň
010
241
N
1A1024NZ Dual N
z
Ċ
anr
le
Po
N-Channel Power Trench [®]
Tre
nc
n ®
Ξ
MOSFET
H

BV _{DSS}	Drain to Source Breakdown Voltage	I_{D} = 250 μ A, V_{GS} = 0 V	20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±8 V, V_{DS} = 0 V			±10	μA
On Char	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	0.4	0.7	1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		-3		mV/°C
		V _{GS} = 4.5 V, I _D = 5.0 A		37	54	
		V _{GS} = 2.5 V, I _D = 4.2 A		43	66	
r _{DS(on)}	Static Drain to Source On-Resistance	V _{GS} = 1.8 V, I _D = 2.3 A		52	82	mΩ
_ = ()		V _{GS} = 1.5 V, I _D = 2.0 A		67	114	
						1
		V_{GS} = 4.5 V, I_{D} = 5.0 A, T_{J} = 125 °C		51	75	
9 _{FS}	Forward Transconductance	$V_{GS} = 4.5 \text{ V}, I_D = 5.0 \text{ A}, T_J = 125 \text{ °C}$ $V_{DD} = 5 \text{ V}, I_D = 5.0 \text{ A}$		51 16	75	S
Dynamio	Characteristics			16		
Dynamio C _{iss}	Characteristics			16 375	500	pF
Dynamic C _{iss} C _{oss}	Characteristics Input Capacitance Output Capacitance	V _{DD} = 5 V, I _D = 5.0 A		16 375 70	500 95	pF pF
Dynamic C _{iss} C _{oss} C _{rss}	Characteristics	$V_{DD} = 5 V, I_D = 5.0 A$ $V_{DS} = 10 V, V_{GS} = 0 V,$		16 375	500	pF
Dynamic C _{iss} C _{oss} C _{rss} R _G	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance	$V_{DD} = 5 V, I_D = 5.0 A$ - $V_{DS} = 10 V, V_{GS} = 0 V,$ - f = 1 MHz		16 375 70 40	500 95	pF pF pF
Dynamic C _{iss} C _{oss} C _{rss} R _G Switchir	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DD} = 5 V, I_D = 5.0 A$ - $V_{DS} = 10 V, V_{GS} = 0 V,$ - f = 1 MHz		16 375 70 40	500 95	pF pF pF
Dynamic C _{iss} C _{oss} C _{rss} R _G Switchir	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Ing Characteristics	$V_{DD} = 5 V, I_D = 5.0 A$ $V_{DS} = 10 V, V_{GS} = 0 V,$ f = 1 MHz f = 1 MHz		16 375 70 40 4.3	500 95 65	pF pF pF Ω
Dynamic C _{iss} C _{oss} C _{rss} R _G Switchir t _{d(on)}	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time	$V_{DD} = 5 V, I_D = 5.0 A$ - $V_{DS} = 10 V, V_{GS} = 0 V,$ - f = 1 MHz		16 375 70 40 4.3 5.3	500 95 65 11	pF pF pF Ω ns
Dynamic C _{iss} C _{oss} C _{rss} R _G Switchir	C Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance D Characteristics Turn-On Delay Time Rise Time	$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$ $V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $f = 1 \text{ MHz}$ $V_{DD} = 10 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$		16 375 70 40 4.3 5.3 2.2	500 95 65 11 10	pF pF pF Ω ns
Dynamic C_{iss} C_{oss} C_{rss} R_G Switchir $t_{d(on)}$ t_r $t_{d(off)}$ t_f	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$ $V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $f = 1 \text{ MHz}$ $V_{DD} = 10 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		16 375 70 40 4.3 5.3 2.2 18	500 95 65 11 10 33	pF pF pF Ω ns ns
Dynamic C_{iss} C_{oss} C_{rss} R_G Switchir $t_{d(on)}$ t_r $t_{d(off)}$	C Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance C Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$ $V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $f = 1 \text{ MHz}$ $V_{DD} = 10 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$		16 375 70 40 4.3 5.3 2.2 18 2.3	500 95 65 11 10 33 10	pF pF pF Ω ns ns ns ns

Test Conditions

Min

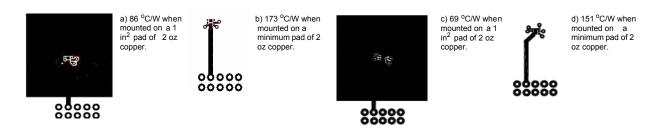
Тур

Max

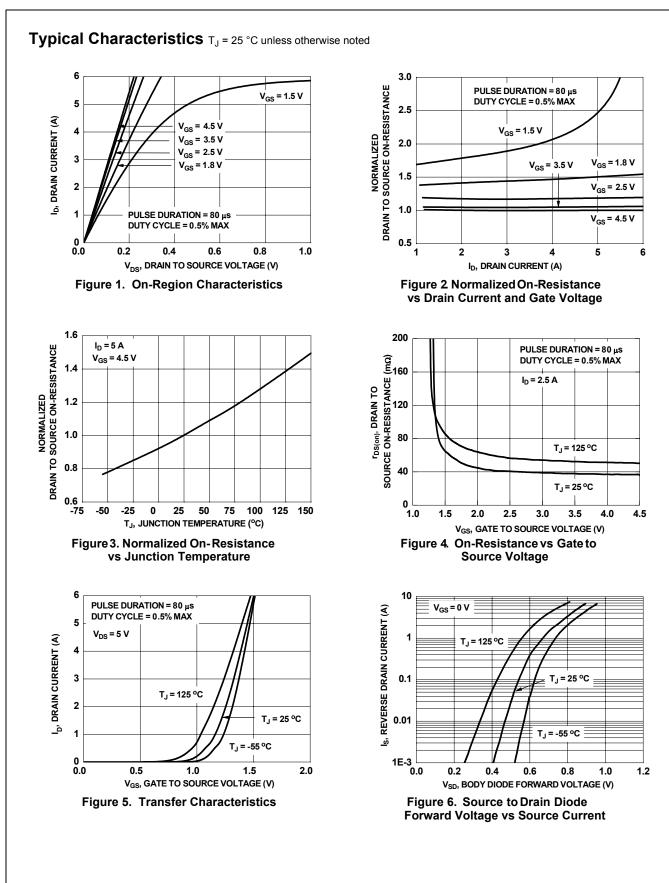
Units

Electrical Characteristics T_J = 25 °C unless otherwise noted

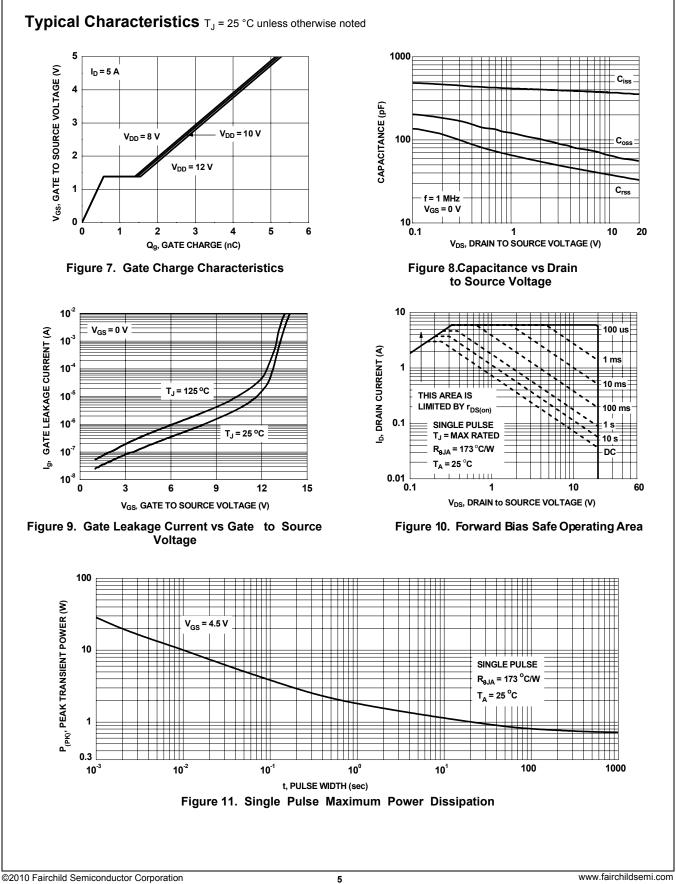
Parameter


Symbol

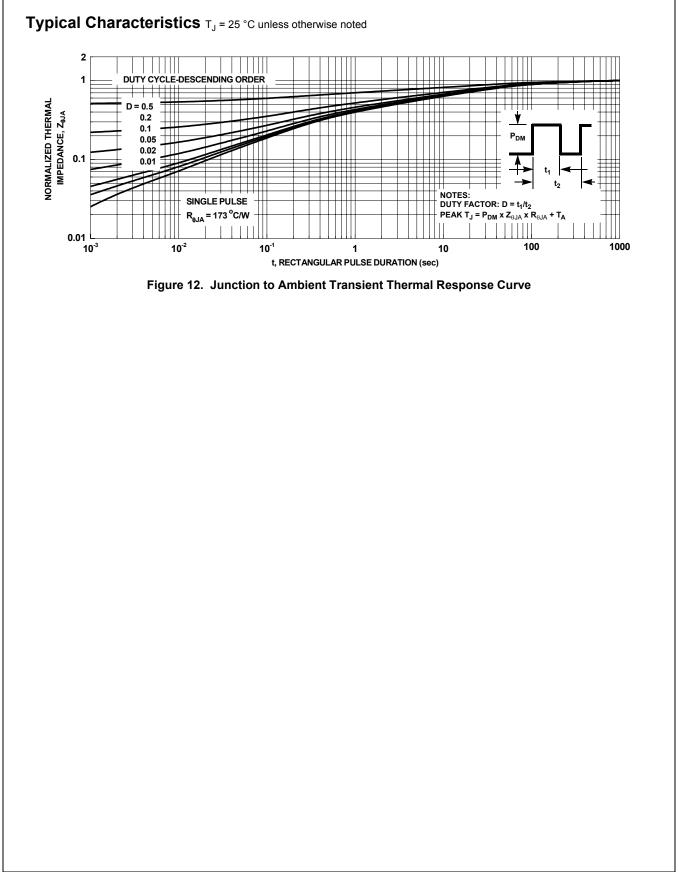
I _S	Maximum Continuous Source-Drain Diode Forward Current				1.1	А
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.1 A	(Note 2)	0.7	1.2	V
t _{rr}	Reverse Recovery Time	L = 5.0.0 di/dt = 100.0/	19	35	ns	
Q _{rr}	Reverse Recovery Charge	I _F = 5.0 A, di/dt = 100 A/μs		5	10	nC



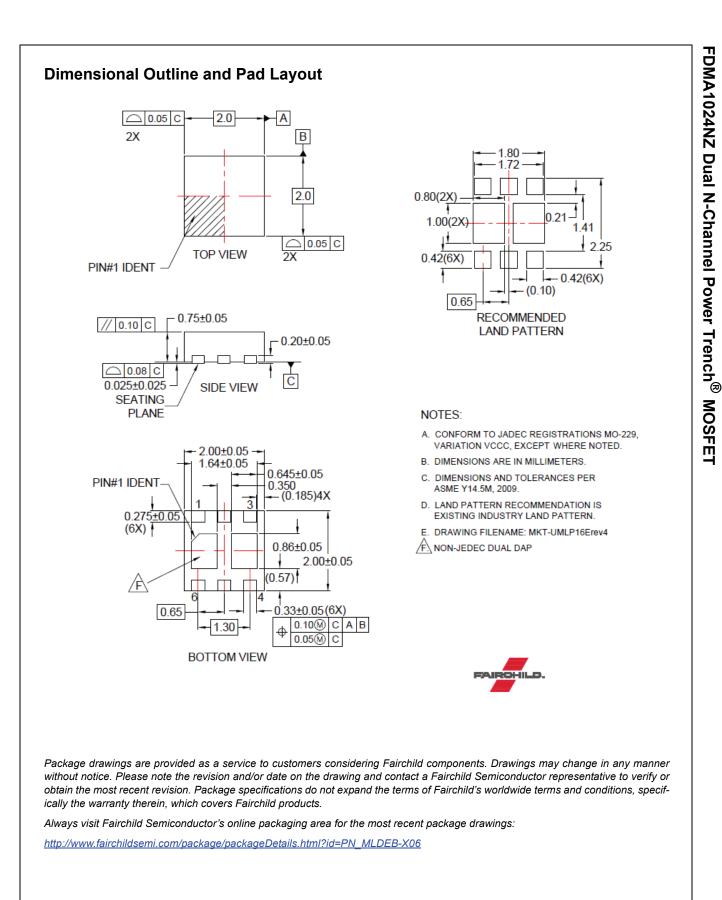
Notes:


- R_{BJA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{BJC} is guaranteed by design while R_{BJA} is determined by the user's board design.
 (a) R_{BJA} = 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.
 - (b) $R_{\theta JA} = 173 \text{ °C/W}$ when mounted on a minimum pad of 2 oz copper. For single operation.
 - (c) $R_{\theta JA} = 69 \text{ }^{\circ}\text{C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
 - (d) R_{0JA} = 151 °C/W when mounted on a minimum pad of 2 oz copper. For dual operation.

- 2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0 %
- 3: The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.



©2010 Fairchild Semiconductor Corporation FDMA1024NZ Rev.B5 www.fairchildsemi.com



FDMA1024NZ Dual N-Channel Power Trench[®] MOSFET

FDMA1024NZ Rev.B5

FDMA1024NZ Dual N-Channel Power Trench[®] MOSFET

©2010 Fairchild Semiconductor Corporation FDMA1024NZ Rev.B5

Not In Production

Obsolete

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

Rev. 168

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com