$\mathrm{V}_{\mathrm{DSS}}$	650 V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$ (Typ.)	$30 \mathrm{~m} \Omega$
$\mathrm{I}_{\mathrm{D}}{ }^{\text {1 }}$	70 A
P_{D}	262 W

-Outline

- Inner circuit

Please note Driver Source and Power Source are not exchangeable. Their exchange might lead to malfunction.
\bullet Packaging specifications

Type	Packing	Tube
	Reel size (mm)	-
	Tape width (mm)	-
	Basic ordering unit (pcs)	30
	Taping code	C14
	Marking	SCT3030AR

- Absolute maximum ratings $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value	Unit
Drain - Source Voltage	$\mathrm{V}_{\text {DSS }}$	650	V
Continuous Drain current T^{\prime} 	$\mathrm{I}_{\mathrm{D}}{ }^{*}$	70	A
	$\mathrm{I}_{\mathrm{D}}{ }^{1}$	49	A
Pulsed Drain current	$\mathrm{I}_{\mathrm{p} \text { pulse }}{ }^{\text {2 }}$	175	A
Gate - Source voltage (DC)	$\mathrm{V}_{\text {GSS }}$	-4 to +22	V
Gate - Source surge voltage ($\mathrm{t}_{\text {surge }}<300 \mathrm{~ns}$)	$\mathrm{V}_{\text {GSS_surge }}{ }^{*}{ }^{\text {a }}$	-4 to +26	V
Recommended drive voltage	$\mathrm{V}_{\text {GS_op }}{ }^{*}$	0/+18	V
Junction temperature	T_{j}	175	${ }^{\circ} \mathrm{C}$
Range of storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +175	${ }^{\circ} \mathrm{C}$

-Electrical characteristics $\left(T_{a}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Values			Unit
			Min.	Typ.	Max.	
Drain - Source breakdown voltage	$\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=-55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 650 \\ & 650 \end{aligned}$	-		V
Zero Gate voltage Drain current	$\mathrm{I}_{\text {dss }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=650 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	10	$\mu \mathrm{A}$
Gate - Source leakage current	$\mathrm{I}_{\text {GSS }+}$	$\mathrm{V}_{\mathrm{GS}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	100	nA
Gate - Source leakage current	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}=-4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	-100	nA
Gate threshold voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13.3 \mathrm{~mA}$	2.7	-	5.6	V
Static Drain - Source on - state resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}{ }^{* 5}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=27 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 30 \\ & 43 \end{aligned}$	39	$\mathrm{m} \Omega$
Gate input resistance	R_{G}	$\mathrm{f}=1 \mathrm{MHz}$, open drain	-	7	-	Ω

-Thermal resistance

Parameter	Symbol	Values			Unit
		Min.	Typ.	Max.	
Thermal resistance, junction - case	$\mathrm{R}_{\text {thJc }}$	-	0.44	0.57	${ }^{\circ} \mathrm{C} / \mathrm{W}$

- Typical Transient Thermal Characteristics

Symbol	Value	Unit	Symbol	Value	Unit
$\mathrm{R}_{\mathrm{th} 1}$	2.56×10^{-2}	K/W	$\mathrm{C}_{\mathrm{th} 1}$	1.39×10^{-3}	Ws/K
$\mathrm{R}_{\mathrm{th} 2}$	1.95×10^{-1}		$\mathrm{C}_{\text {th2 }}$	1.00×10^{-2}	
$\mathrm{R}_{\mathrm{th} 3}$	2.20×10^{-1}		$\mathrm{C}_{\text {th3 }}$	3.57×10^{-2}	

- Electrical characteristics $\left(T_{a}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Values			Unit
			Min.	Typ.	Max.	
Transconductance	$\mathrm{g}_{\text {fs }}{ }^{\text {5 }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=27 \mathrm{~A}$	-	9.4	-	S
Input capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=500 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	1526	-	pF
Output capacitance	$\mathrm{C}_{\text {oss }}$		-	89	-	
Reverse transfer capacitance	$\mathrm{C}_{\text {rss }}$		-	42	-	
Effective output capacitance, energy related	$\mathrm{C}_{\text {o(er) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \text { to } 300 \mathrm{~V} \end{aligned}$	-	230	-	pF
Total Gate charge	$Q_{g}{ }^{\text {5 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=300 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=27 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=18 \mathrm{~V} \end{aligned}$ See Fig. 1-1.	-	104	-	nC
Gate - Source charge	$\mathrm{Q}_{\mathrm{gs}}{ }^{* 5}$		-	19	-	
Gate - Drain charge	$\mathrm{Q}_{\mathrm{gd}}{ }^{* 5}$		-	55	-	
Turn - on delay time	$\mathrm{t}_{\mathrm{d}\left(\text { (n) }{ }^{*}{ }^{*}\right.}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=27 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} /+18 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=0 \Omega, \mathrm{~L}=750 \mu \mathrm{H} \\ & \mathrm{~L}_{\sigma}=50 \mathrm{nH}, \mathrm{C}_{\sigma}=10 \mathrm{pF} \end{aligned}$ See Fig. 2-1, 2-2, 2-3. $\mathrm{E}_{\text {on }}$ includes diode reverse recovery.	-	7	-	ns
Rise time	$\mathrm{t}^{*}{ }^{5}$		-	22	-	
Turn - off delay time	$\mathrm{t}_{\mathrm{d}(\mathrm{fff})}{ }^{*}$		-	27	-	
Fall time	$\mathrm{t}_{\mathrm{f}}{ }^{5}$		-	21	-	
Turn - on switching loss	$\mathrm{E}_{\text {on }}{ }^{* 5}$		-	159	-	$\mu \mathrm{J}$
Turn - off switching loss	$\mathrm{E}_{\text {off }}{ }^{* 5}$			87	-	

-Body diode electrical characteristics (Source-Drain) $\left(T_{a}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Values			Unit
			Min.	Typ.	Max.	
Body diode continuous, forward current	$\mathrm{I}_{\mathrm{s}}{ }^{* 1}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$			70	A
Body diode direct current, pulsed	$\mathrm{I}_{\text {SM }}{ }^{*}$		-	-	175	A
Forward voltage	$\mathrm{V}_{\text {SD }}{ }^{* 5}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=27 \mathrm{~A}$		3.2		V
Reverse recovery time	$\mathrm{t}_{\mathrm{rr}}{ }^{5}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=27 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=2500 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~L}_{\sigma}=50 \mathrm{nH}, \mathrm{C}_{\sigma}=10 \mathrm{pF} \end{aligned}$See Fig. 3-1, 3-2.	-	28	-	ns
Reverse recovery charge	$\mathrm{Q}_{\mathrm{rr}}{ }^{5}$		-	702	-	nC
Peak reverse recovery current	$\mathrm{I}_{\text {rm }}{ }^{*} 5$		-	40	-	A

*1 Limited by maximum temperature allowed.
*2 $\mathrm{P}_{\mathrm{w}} \leq 10 \mu \mathrm{~s}$, Duty cycle $\leq 1 \%$
*3 Example of acceptable V_{GS} waveform

Please note especially when using driver source that $\mathrm{V}_{\text {GSS_surge }}$ must be in the range of absolute maximum rating.
*4 Please be advised not to use SiC-MOSFETs with V_{GS} below 13 V as doing so may cause thermal runaway.
*5 Pulsed

\bullet Electrical characteristic curves

Fig. 1 Power Dissipation Derating Curve

Fig. 3 Typical Transient Thermal Resistance vs. Pulse Width

Fig. 2 Maximum Safe Operating Area

- Electrical characteristic curves

Fig. 4 Typical Output Characteristics(I)

Fig. 5 Typical Output Characteristics(II)

Fig. $6 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ 3rd Quadrant Characteristics

- Electrical characteristic curves

Fig. $7 \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ Typical Output
Characteristics(I)

Fig. $9 \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ 3rd Quadrant Characteristics

Fig. $8 \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ Typical Output Characteristics(II)

Fig. 10 Body Diode Forward Voltage vs. Gate - Source Voltage

\bullet Electrical characteristic curves

Fig. 11 Typical Transfer Characteristics (I)

Fig. 13 Gate Threshold Voltage
vs. Junction Temperature

Fig. 12 Typical Transfer Characteristics (II)

Fig. 14 Transconductance vs. Drain Current

- Electrical characteristic curves

Fig. 15 Static Drain - Source On - State
Resistance vs. Gate - Source Voltage

Fig. 17 Static Drain - Source On - State Resistance vs. Drain Current

Fig. 16 Static Drain - Source On - State Resistance vs. Junction Temperature

Fig. 18 Normalized Drain - Source Breakdown Voltage vs. Junction Temperature

- Electrical characteristic curves

Fig. 19 Typical Capacitance

> vs. Drain - Source Voltage

Fig. 21 Dynamic Input Characteristics

- Electrical characteristic curves

Fig. 22 Typical Switching Time vs. External Gate Resistance

Fig. 24 Typical Switching Loss
vs. Drain Current

Fig. 23 Typical Switching Loss
vs. Drain - Source Voltage

Fig. 25 Typical Switching Loss
vs. External Gate Resistance

- Measurement circuits and waveforms

Fig.1-1 Gate Charge Measurement Circuit

Fig.2-1 Switching Characteristics Measurement Circuit

Fig.2-2 Waveforms for Switching Time

Fig.3-2 Reverse Recovery Waveform

Notes

1) The information contained herein is subject to change without notice.
2) Before you use our Products, please contact our sales representative and verify the latest specifications.
3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.
Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
6) The Products specified in this document are not designed to be radiation tolerant.
7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, and power transmission systems.
8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/

SCT3030AR - Web Page

Part Number	SCT3030AR
Package	TO-247-4L
Unit Quantity	450
Minimum Package Quantity	30
Packing Type	Tube
Constitution Materials List	inquiry
RoHS	Yes

