

November 2014

ISL9R860PF2 8 A, 600 V, STEALTH™ Diode

Features

- Stealth Recovery t_{rr} = 28 ns (@I_F = 8 A)
- Max Forward Voltage, V_F = 2.4 V (@ T_C = 25°C)
- 600 V Reverse Voltage and High Reliability
- · Avalanche Energy Rated
- RoHS Compliant

Applications

- Switch Mode Power Supplies
- · Hard Switched PFC Boost Diode
- · UPS Free Wheeling Diode
- · Motor Drive FWD
- SMPS FWD
- Snubber Diode

Description

The ISL9R860PF2 is a STEALTH™ diode optimized for low loss performance in high frequency hard switched applications. The STEALTH™ family exhibits low reverse recovery current (I_{rr}) and exceptionally soft recovery under typical operating conditions. This device is intended for use as a free wheeling or boost diode in power supplies and other power switching applications. The low I_{rr} and short ta phase reduce loss in switching transistors. The soft recovery minimizes ringing, expanding the range of conditions under which the diode may be operated without the use of additional snubber circuitry. Consider using the STEALTH™ diode with an SMPS IGBT to provide the most efficient and highest power density design at lower cost.

Package Symbol

CATHODE ANODE

Device Maximum Ratings T_C= 25°C unless otherwise noted

Symbol	Parameter	Ratings	Unit
V_{RRM}	Peak Repetitive Reverse Voltage	600	V
V _{RWM}	Working Peak Reverse Voltage	600	V
V _R	DC Blocking Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current (T _C = 75°C)	8	Α
I _{FRM}	Repetitive Peak Surge Current (20 kHz Square Wave)	16	Α
I _{FSM}	Nonrepetitive Peak Surge Current (Halfwave 1 Phase 60 Hz)	100	Α
P _D	Power Dissipation	26	W
E _{AVL}	Avalanche Energy (1 A, 40 mH)	20	mJ
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to 175	°C
TL	Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s	300	°C

CAUTION: Stresses above those listed in "Device Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Part Num	ber	Top Mark	Package	Packing Method	Reel Size	Tape	Width	Qι	Quantity	
ISL9R860PF2 IS		ISL9R860PF2	TO-220F-2L	Tube N/A		N/A		50		
Electric	cal C	Characteris	Stics T _C = 25°C	unless otherwise no	oted					
Symbol	Parameter		Test Conditions		Min	Тур	Max	Unit		
•	Cha	racteristics					, ,,			
		ntaneous Reverse Current		V _R = 600 V	T _C = 25°C	_	_	100	μА	
			taneous reverse ourient		$T_{\rm C} = 125^{\circ}{\rm C}$	-	-	1.0	mA	
					1 0	<u>I</u>	l			
		racteristics			T					
V_{F}	Insta	intaneous Forwa	rd Voltage	I _F = 8 A	$T_C = 25^{\circ}C$	-	2.0	2.4	V	
					T _C = 125°C	-	1.6	2.0	V	
Dynamic	: Cha	racteristics								
CJ	Junction Capacitance $V_R = 10 \text{ V}$, $I_F = 0 \text{ A}$					-	30		pF	
Switchin	na Ch	aracteristics				•			_	
t _{rr}			$I_F = 1 \text{ A, di}_F/\text{dt} = 10$	00 A/us. V _P = 30 V	' -	18	25	ns		
The second secon		$I_F = 8 \text{ A}, di_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	21	30	ns			
t _{rr}	Reverse Recovery Time			$I_F = 8 \text{ A},$ $di_F/dt = 200 \text{ A/}\mu\text{s},$ $V_R = 390 \text{ V}, T_C = 25^{\circ}\text{C}$		-	28	-	ns	
I _{rr}	Maximum Reverse Recovery Current		-			3.2	-	Α		
Q _{rr}	Reverse Recovery Charge		-			50	-	nC		
t _{rr}	Reve	erse Recovery Ti	me	I _F = 8 A,		-	77	-	ns	
S	Softr	Softness Factor (t _b /t _a)		$di_F/dt = 200 A/\mu s$,		-	3.7	-		
I _{rr}	Maximum Reverse Recovery Current Reverse Recovery Charge		$V_R = 390 \text{ V},$		-	3.4	-	Α		
Q _{rr}			$T_{\rm C} = 125^{\circ}{\rm C}$		-	150	-	nC		
t _{rr}		erse Recovery Ti		I _F = 8 A,		-	53	-	ns	
S	Softr	Softness Factor (t _b /t _a)		$di_F/dt = 600 \text{ A/}\mu\text{s},$		-	2.5	-		
I _{rr}	Maximum Reverse Recovery Current Reverse Recovery Charge		$V_R = 390 \text{ V},$ $T_C = 125^{\circ}\text{C}$		-	6.5	-	Α		
Q _{rr}						195	-	nC		
dl _M /dt		aximum di/dt during t _b			- /	500	-	A/µs		
Thermal	Cha	racteristics								
· · · · · · · · · · · · · · · ·	Thermal Resistance Junction to Case									
$R_{\theta JC}$	Ther	mal Resistance	Junction to Case			/ -	-	4.8	°C/W	

Typical Performance Curves 16 100 175°C 14 150°C REVERSE CURRENT (µA) 12 FORWARD CURRENT (A) 10 8 100°C 6 25°C 2 0.1 1.25 1.5 1.75 0.25 0.5 0.75 200 V_F, FORWARD VOLTAGE (V) V_R, REVERSE VOLTAGE (V) Figure 1. Forward Current vs Forward Voltage Figure 2. Reverse Current vs Reverse Voltage V_R = 390V, T_J = 125°C $V_R = 390V, T_J = 125$ °C 70 $t_b AT d_F/dt = 200A/\mu s, 500A/\mu s, 800A/\mu s$ 60 RECOVERY TIMES (ns) 60 RECOVERY TIMES 50 50 40 40 30 30 20 20 10 10 8 10 300 400 500 600 700 800 di_F/dt, CURRENT RATE OF CHANGE (A/ μ s) 100 I_F, FORWARD CURRENT (A) Figure 3. t_a and t_b Curves vs Forward Current Figure 4. t_a and t_b Curves vs di_F/dt $V_R = 390V, T_J = 125$ °C $di_F/dt = 800A/\mu s$ $V_R = 390V, T_J = 125$ °C MAX REVERSE RECOVERY CURRENT (A) 10 12 In, MAX REVERSE RECOVERY CURRENT 9 10 8 $di_F/dt = 500A/\mu s$ 7 6 6 5 $di_F/dt = 200A/\mu s$ 4 3

Figure 5. Maximum Reverse Recovery Current vs Forward Current

I_F, FORWARD CURRENT (A)

10

12

Figure 6. Maximum Reverse Recovery Current vs di_{F}/dt

di_E/dt, CURRENT RATE OF CHANGE (A/µs)

400 500 600 700

100 200

800

900 1000

Test Circuits and Waveforms

Figure 12. t_{rr} Test Circuit

Figure 13. t_{rr} Waveforms and Definitions

Figure 14. Avalanche Energy Test Circuit

Figure 15. Avalanche Current and Voltage Waveforms

Mechanical Dimensions

Figure 16. TO-220F 2L - 2LD; TO220; MOLDED; FULL PACK

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN TF220-002.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ntended to be an exhaustive list of AccuPower™
Awinda®
AX-CAP®*
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™

OTL

Current Transfer Logic™
DEUXPEED®

Dual Cool™
EcoSPARK®
EfficentMax™
ESBC™

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FPS™

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™

Green FPS™ e-Series™ Gmax™ GTO™

IntelliMAX™ ISOPLANAR™ Marking Small Sp

Marking Small Speakers Sound Louder and Better™

MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™

MillerDrive™ MotionMax™ MotionGrid® MTi® MTx® MVN® mWSaver® OptoHiT™ ® PowerTrench[®] PowerXS™

Programmable Active Droop $^{\text{TM}}$ QFET $^{\text{®}}$

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM ®*
GENERAL
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TiNYOPTO™
TinyPower™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®*

µSerDes™

UHC®
UHC®
UItra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

Xsens™ 仙童 ™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance with
 instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 171

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com