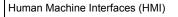
Freescale Semiconductor Advance Information

Document Number: MC34709 Rev. 4.0, 11/2013


Power Management Integrated Circuit (PMIC) for i.MX50/53 Families

The 34709 is the Power Management Integrated Circuit (PMIC) designed primarily for use with the Freescale i.MX50 and i.MX53 families. It offers a low cost solution targeting embedded applications that do not require a battery charger. However, it can be easily combined with an external charger, allowing flexibility for either single or multi-cell Li-lon battery configurations. It supports both consumer and industrial applications with a single 130-pin 8x8 MAPBGA 0.5 mm pitch package that is easily routable in low cost board designs.

Features

- Six multi-mode buck regulators for direct supply of the processor core, memory, and peripherals.
- Boost regulator for USB PHY domain on i.MX processors.
- Eight LDO regulators with internal and external pass devices for thermal budget optimization and DDR memory voltage reference
- 10-bit ADC for monitoring battery and other inputs
- Real time clock and crystal oscillator circuitry with a coin cell backup/charger
- SPI/I²C bus for control and register interface
- · Four general purpose low-voltage I/Os with interrupt capability
- Two PWM outputs

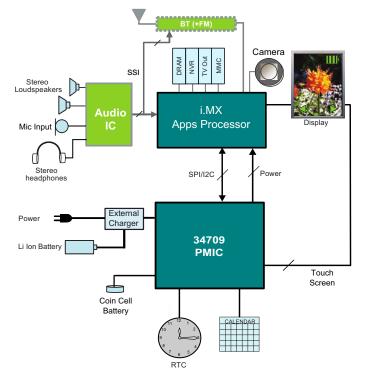


Figure 1. Simplified Application Diagram

* This document contains certain information on a new product. Specifications and information herein are subject to change without notice. © Freescale Semiconductor, Inc., 2013. All rights reserved.

Table of Contents

1	Orde	rable Parts	s	4
2	Part	Identificatio	on	5
	2.1	Description	on	5
	2.2	Format a	Ind Examples	5
	2.3		· · · · · · · · · · · · · · · · · · ·	
3	Inter		Diagram	
	3		Block Diagram	
4	Pin C		IS	
	4.1		·	
	4.2		itions	
5	Gene		ct Characteristics	
	5.1		n Ratings	
	5.2		Characteristics	
			Power Dissipation	
	5.3		I Characteristics	
	0.0		General PMIC Specifications	
			Current Consumption	
6	Gene		ption	
0	6.1		······	
	6.2		agram	
	7		al Block Description	
7			x Description	
'	7.1		Requirements	
	7.2		References Block	
	7.3		and Oscillators	
	1.5	-	Clock Generation	
			SRTC Support	
			Coin Cell Battery Backup	
	7.4		Management	
	7.4		Control	
			Interrupt Bit Summary	
	7.5		eneration	
	7.5		Power Tree	
			Modes of Operation	
			Power Control Logic	
			Buck Switching Regulators	
			Boost Switching Regulator	
	7.6		Linear Regulators (LDOs)	
	7.6		o Digital Converter	
			Input Selector	
			Control	
			Dedicated Readings	
			Touch Screen Interface	
			ADC Specifications	
	7.7		Circuits	
			General Purpose I/Os	
	7.0		PWM Outputs	
	7.8		erfaces	
			80 Interface	
			I2C Interface	
		7.8.3	SPI/I2C Specification	1

	7.9	Configu	ration Registers	88
		7.9.1	Register Set structure	
		7.9.2	Specific Registers	89
		7.9.3	SPI/I2C Register Map	90
		7.9.4	SPI Register's Bit Description	96
8	Туріс	al Applic	ations	128
	8.1	Applicat	ion Diagram	128
	8.2	Bill of M	aterial	129
	8.3	34709 L	ayout Guidelines	132
		8.3.1	General board recommendations	132
		8.3.2	General Routing Requirements	132
		8.3.3	Parallel Routing Requirements	132
		8.3.4	Switching Regulator Layout Recommendations	133
9	Pack	aging		135
10	Refe	rence Se	ction	138
11	Revis	sion Histo	ry	139

34709

1 Orderable Parts

This section describes the part numbers available to be purchased, along with their differences. Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search for the following device numbers.

Table 1. Orderable Part Variations

Part Number ⁽¹⁾	Temperature (T _A)	Package
MC34709VK	-40 to 85 °C	130 MAPBGA - 8.0 x 8.0 mm - 0.5 mm Pitch

Notes

1. To Order parts in Tape & Reel, add the R2 suffix to the part number.

2 Part Identification

This section provides an explanation of the part numbers and their alpha numeric breakdown.

2.1 Description

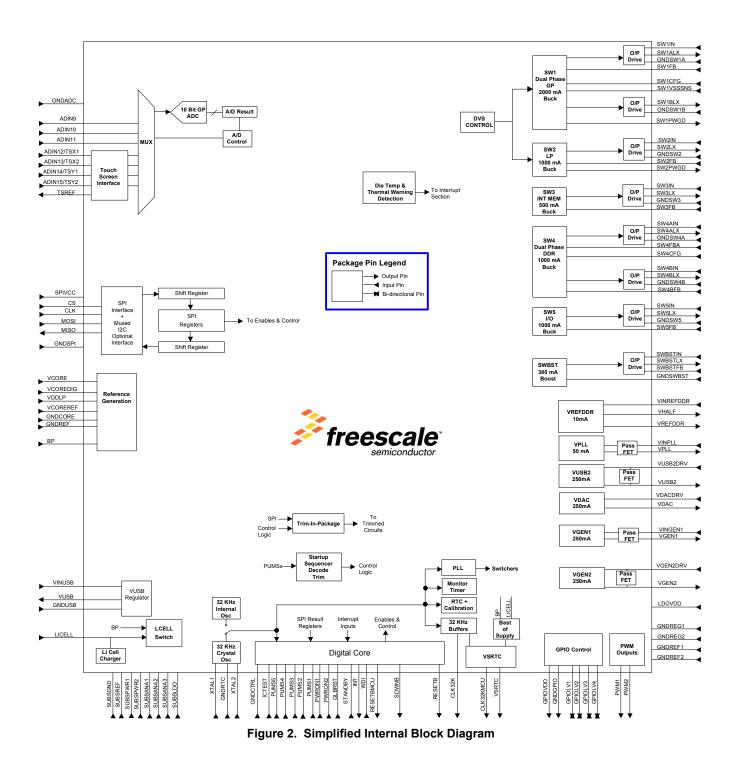
Part numbers for the chips have fields that identify the specific part configuration. You can use the values of these fields to determine the specific part you have received.

2.2 Format and Examples

Part numbers for a given device have the following format, followed by a device example:

```
Table 2 - Part Numbering - Analog:
```

MC tt xxx r v PP RR - MC34709VKR2


2.3 Fields

These tables list the possible values for each field in the part number (not all combinations are valid).

FIELD	DESCRIPTION	VALUES
MC	Product Category	MC- Qualified Standard PC- Prototype Device
tt	Temperature Range	• 33 = -40 °C to > 105 °C • 34 = -40 °C to ≤ 105 °C • 35 = -55 °C to ≥ 125 °C
ххх	Product Number	Assigned by Marketing
r	Revision	• (default blank)
v	Variation	• (default blank)
PP	Package Identifier	Varies by package
RR	Tape and Reel Indicator	• R2 = 13 inch reel hub size

Table 2: Part Numbering - Analog

3 Internal Block Diagram

Pin Connections

4 Pin Connections

4.1 Ballmap

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A		MISO	GNDSPI	SPIVCC	GLBRST	PWRON1	PWM2	PWM1	ICTEST	SW2LX		SW2FB	SW2PWGD	NC_2	
в	CLK	CS	MOSI	INT	RESETB	GNDCTRL	GPIOLV1		GPIOLV2	GNDSW2	SW2IN	GNDREF2	SW3FB		NC_3
С	GNDUSB						GPIOLV0	GPIOVDD	GNDGPIO						
D	VINUSB	VUSB			RESETBMCU	SDWNB								GNDSW3	SW3LX
E	XTAL1		CLK32K		PWRON2	PUMS5		SUBSPWR1		GPIOLV3	SUBSPWR2			SW3IN	
F	GNDRTC		CLK32KVCC		PUMS4	PUMS3		SUBSPWR1	SUBSPWR1	SUBSANA2				GNDSWBST	SWBSTIN
G	XTAL2		CLK32KMCU		PUMS2	PUMS1		SUBSPWR1	SUBSPWR1	SUBSPWR3				SWBSTLX	
н	GNDCORE	VSRTC			GNDADC	ADIN9		SUBSPWR1	SUBSPWR1	SUBSLDO		VGEN1		VINGEN1	SWBSTFB
J	VCOREDIG	VCORE			ADIN10	ADIN11		SUBSGND	SUBSPWR1			GNDREG2		VINREFDDR	VHALF
К	VCOREREF		WDI		TSX1	TSREF		SUBSREF	SUBSPWR	SW1PWGD		SUBSANA1		VPLL	VREFDDR
L	VDDLP		TSY2	TSX2		TSY1						SW1CFG		VGEN2DRV	VINPLL
М	GNDREF	LICELL				SW4CFG		SW5FB						GNDREG1	VGEN2
N	BP	SW4AFB							GNDREF1					VDACDRV	LDOVDD
Ρ	STANDBY	SW4BFB	GNDSW4A	SW4AIN	SW4BIN	GNDSW4B	SW5IN	GNDSW5	GNDSW1A	SW1IN	SW1IN	GNDSW1B	SW1FB	VUSB2DRV	VDAC
R	NC_1		SW4ALX			SW4BLX		SW5LX	SW1ALX		SW1BLX		SW1VSSSNS	VUSB2	

Figure 3. Top View Ballmap

4.2 Pin Definitions

Table 3. Pin Definitions

Pin Number	Pin Name	Pin Function	Definition
Supply			
N1	BP	I	 Application supply point Input supply to the IC core circuitry
D6	SDWNB	0	Indication of imminent system shutdown
IC Core			
J2	VCORE	0	Regulated supply for the IC analog core circuitry
J1	VCOREDIG	0	Regulated supply for the IC digital core circuitry
K1	VCOREREF	0	Main bandgap reference
L1	VDDLP	0	VDDLP reference
H1	GNDCORE	GND	Ground for the IC core circuitry
M1	GNDREF	GND	Ground reference for IC core circuitry
Switching Regul	ators		
P10 P11	SW1IN	I	Regulator 1 input ⁽²⁾
R9	SW1ALX	0	Regulator 1A switch node connection ⁽²⁾
P13	SW1FB	I	Regulator 1 feedback ⁽²⁾
P9	GNDSW1A	GND	Ground for Regulator 1A
R13	SW1VSSSNS	GND	Regulator 1 sense
K10	SW1PWGD	0	Power good signal for SW1 ⁽²⁾
R11	SW1BLX	0	Regulator 1B switch node connection ⁽²⁾
P12	GNDSW1B	GND	Ground for Regulator 1B
L12	SW1CFG	I	Regulator 1A/B mode configuration ⁽²⁾
B11	SW2IN	I	Regulator 2 input ⁽²⁾
A10	SW2LX	0	Regulator 2 switch node connection ⁽²⁾
A12	SW2FB	I	Regulator 2 feedback ⁽²⁾
B10	GNDSW2	GND	Ground for Regulator 2
A13	SW2PWGD	0	Power good signal for SW2 ⁽²⁾
E14	SW3IN	I	Regulator 3 input ⁽²⁾
D15	SW3LX	0	Regulator 3 switch node connection ⁽²⁾
B13	SW3FB	ļ	Regulator 3 feedback ⁽²⁾
D14	GNDSW3	GND	Ground for Regulator 3
B12	GNDREF2	GND	Ground reference for Regulators
P4	SW4AIN	I	Regulator 4A input ⁽²⁾
R3	SW4ALX	0	Regulator 4A switch node connection ⁽²⁾
N2	SW4AFB	ļ	Regulator 4A feedback ⁽²⁾
P3	GNDSW4A	GND	Ground for Regulator 4A

8

Table 3. Pin Definitions (continued)

J14VINREFDDRIVREFDDR input supplyK15VREFDDROVREFDDR regulator outputJ15VHALFOHalf supply reference for VREFDDRL15VINPLLIVPLL input supplyK14VPLLOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOSupply pin for VUSB2, VDAC, and VGEN2	Pin Number	Pin Name	Pin Function	Definition
P2 SW4BFB I Regulator 4B feedback ⁽²⁾ P6 GNDSW48 GND Ground for Regulator 4B M6 SW4CFG I Regulator 5 input ⁽²⁾ P7 SW5IN I Regulator 5 output ⁽²⁾ R8 SW5LX O Regulator 5 output ⁽²⁾ M8 SW5FB I Regulator 5 output ⁽²⁾ M8 SW5FB I Regulator 5 output ⁽²⁾ M8 SW5FB I Boost Regulator 5 N9 GNDREF1 GND Ground for Regulator 5 SWBSTIN I Boost Regulator B supply ⁽⁹⁾ G14 SWBSTB I Boost Regulator B supply ⁽⁹⁾ H15 SWBSTB I Boost Regulator B supply ⁽⁹⁾ LDO Regulators IVREFDDR I VREFDD regulator output J14 VINREFDDR I VREFDD regulator output J15 VHALF O Haff supply reference for VREFDDR L15 VINPL I VPLL input supply K14 VPL <td>P5</td> <td>SW4BIN</td> <td>I</td> <td>Regulator 4B input ⁽²⁾</td>	P5	SW4BIN	I	Regulator 4B input ⁽²⁾
P6 GNDSW4B GND Ground for Regulator 4B M6 SW4CFG I Regulator 4AB mode configuration ⁽²⁾ P7 SWSIN I Regulator 5 input ⁽²⁾ R8 SW5LX O Regulator 5 output ⁽²⁾ M8 SW5FB I Regulator 5 leadback ⁽²⁾ M8 SW5FB I Regulator 5 N9 GNDREF1 GND Ground for Regulator 5 N9 GNDREF1 GND Ground for regulator 5 F15 SWBSTIN I Boost Regulator BP supply ⁽²⁾ G14 SWBSTFB I Boost Regulator feedback ⁽²⁾ F14 GNDSWBST GND Ground for regulator output J14 VINEFDDR I VREFDDR input supply K15 VREPDR O VREFDDR regulator output J14 VINEFDDR I VPLL input supply K14 VPLL O VPLL regulator output N14 VDACDRV O Dreve output for VDAC regulator using an extermal PNP device	R6	SW4BLX	0	Regulator 4B switch node connection ⁽²⁾
M6SW4CFGIRegulator 4AB mode configuration (2) P7SW5INIRegulator 5 input (2) R8SW5LXORegulator 5 output (2) M8SW5FBIRegulator 5 feedback (2) P8GNDSREF1GNDGround for Regulator 5P9GNDREF1GNDGround for Regulator 5F15SWBSTINIBoost Regulator BP supply (2) G14SWBSTEBIBoost Regulator BP supply (2) H15SWBSTFBIBoost Regulator feedback (2) F14GNDSWBSTGNDGround for regulator boostLDO RegulatorGNDVREFDDR input supplyK15VREFDDRIVREFDDR regulator outputJ14VINREFDDRIVREFDDR regulator outputJ15VHALFOVREFDDR regulator outputJ15VHALFOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOUDAC regulator outputN15LDOVDDISupply pin for VUSB2. VDAC, and VGEN2Must be always connected to the same supply as the PNP emitter. Recommended to use P as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB input supplyC1GNDUSBGNDGround for VUSB LDOD1VINUSBIVUSB2 input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVQVUSB2 regulator using an extern	P2	SW4BFB	I	Regulator 4B feedback ⁽²⁾
P7 SW5IN I Regulator 5 input ⁽²⁾ R8 SW5LX O Regulator 5 output ⁽²⁾ M8 SW5FB I Regulator 5 feetback ⁽²⁾ P8 GNDSW5 GND Ground for Regulator 5 N9 GNDREF1 GND Ground reference for regulators F15 SW8STIN I Boost Regulator B supply ⁽²⁾ G14 SWBSTPB I Boost Regulator B supply ⁽²⁾ F15 SW8STFB I Boost Regulator for regulator connection ⁽²⁾ H15 SWBSTFB I Boost Regulator for regulator boost LDO Regulators I VREFDDR input supply J14 VINREFDDR O VREFDDR regulator output J15 VHALF O Half supply reference for VREFDDR L15 VINPLL I VPLL regulator output N14 VDACDRV O Drive output for VDAC regulator using an external PNP device P15 VDAC O VDXER_C qualitor output N15 LDOVDD I Must be always connected to the same supply as the PNP emitter. Recommended to use B Pa she LOVD DO Supply. See Elgune.24 for a typical connection diagram. D1 VINUSB I VUSB1 put supply C1 GNDUSB GND </td <td>P6</td> <td>GNDSW4B</td> <td>GND</td> <td>Ground for Regulator 4B</td>	P6	GNDSW4B	GND	Ground for Regulator 4B
R8 SW5LX O Regulator 5 output ⁽²⁾ M8 SW5FB I Regulator 5 feedback ⁽²⁾ P8 GNDSW5 GND Ground for Regulator 5 N9 GNDREF1 GND Ground for Regulator 5 F15 SWBSTN I Boost Regulator BP supply ⁽²⁾ G14 SWBSTEB I Boost Regulator feedback ⁽²⁾ F15 SWBSTEB I Boost Regulator feedback ⁽²⁾ F14 GNDSWBST GND Ground for regulator feedback ⁽²⁾ F14 GNDSWBST GND Ground for regulator feedback ⁽²⁾ LD0 Regulators UNREFDDR I VREFDDR regulator feedback ⁽²⁾ J14 VINEFDDR O VREFDDR regulator output J15 VHALF O Half supply reference for VREFDDR L15 VINPLL I VPLL input supply K14 VPLL Q VPLL regulator output N14 VDACDRV O Drive output for VDAC, and VGEN2 N15 LDOVDD I MustB an	M6	SW4CFG	I	Regulator 4A/B mode configuration ⁽²⁾
M8 SW5FB I Regulator 5 feedback (?) P8 GNDSW5 GND Ground for Regulator 5 N9 GNDREF1 GND Ground reference for regulators F15 SWBSTIN I Boost Regulator BP supply (?) G14 SWBSTEX O SWBST switch node connection (?) H15 SWBSTFB I Boost Regulator feedback (?) F14 GNDSWBST GND Ground for regulator boost LDO Regulators J14 VINREFDDR I VREFDDR regulator output J15 VHALF O Haif supply reference for VREFDDR J15 VHALF O Haif supply reference for VREFDDR L15 VINPLL I VPLL input supply K14 VPLL Q VPLL input supply K14 VPLL Q VPL input supply K14 VDAC O VDAC regulator output N15 LDOVDD I Must be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 24 for	P7	SW5IN	I	Regulator 5 input ⁽²⁾
P8 GNDSW5 GND Ground for Regulator 5 N9 GNDREF1 GND Ground reference for regulators F15 SWBSTIN I Boost Regulator BP supply ⁽²⁾ G14 SWBSTLX O SWBST switch node connection ⁽²⁾ H15 SWBSTFB I Boost Regulator feedback ⁽²⁾ F14 GNDSWBST GND Ground for regulator boost LD0 Regulators UNREFDDR I VREEDD regulator output J14 VINEFDDR I VREEDD regulator output J15 VHALF O Half supply reference for VREFDDR L15 VINPLL I VPLL regulator output N14 VDACDRV O Drive output for VDAC regulator using an external PNP device P15 VDAC O VDAC regulator output N15 LDOVDD I Supply pin for VUSB2, VDAC, and VGEN2 N15 LDOVDD I Supply pin for VUSB2, VDAC, and VGEN2 N15 LDOVDD USB innosceiver regulator output D1 VINUSB <td< td=""><td>R8</td><td>SW5LX</td><td>0</td><td>Regulator 5 output ⁽²⁾</td></td<>	R8	SW5LX	0	Regulator 5 output ⁽²⁾
N9GNDREF1GNDGround reference for regulatorsF15SWBSTINIBoost Regulator BP supply (2)G14SWBSTLXOSWBST witch node connection (2)H15SWBSTFBIBoost Regulator feedback (2)F14GNDSWBSTGNDGround for regulator boostLDO RegulatorsJ14VINEFDDRJ14VINEFDDROVREFDDROVREFDDR regulator outputK15VREFDDROVHALFOHalf supply reference for VREFDDRL15VINPLLIVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN15LDOVDDIMust be always connected to the same supply as the PNP emilter. Recommended to use BP as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB2 input supplyC1GROUBSGround for VUSB1 LDOP14VUSB2DRVIVUSB2 input supplyH12VGEN1IVGEN2 regulator outputH14VINCEN1IVGEN2 regulator outputH14VINCEN1IVGEN2 regulator outputH14VORDEN1IVGEN2 regulator outputH14VGEN2OVUSB2 regulator outputH14VGEN2OVUSB2 regulator outputH14VGEN2O	M8	SW5FB	I	Regulator 5 feedback ⁽²⁾
F15SWBSTINIBoost Regulator BP supply (2)G14SWBSTLXOSWBST switch node connection (2)H15SWBSTFBIBoost Regulator feedback (2)F14GNDSWBSTGNDGround for regulator boostLDO RegulatorsJ14VINREFDDRIVREFDDR regulator outputJ15VREFDDROVREFDDR regulator outputJ15VHALFOHalf supply reference for VREFDDRL15VINPLLIVPLL input supplyK14VPLLOVPLL regulator outputN14VDACCRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN16LDOVDDISupply pin for VUSB2, VDAC, and VGEN2Must be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB2 input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 regulator outputH14VUSB20RVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB20RVOVGEN1 regulator outputH14VINGEN1IVGEN2 regulator outputH12<	P8	GNDSW5	GND	Ground for Regulator 5
G14 SWBSTLX O SWBST switch node connection (2) H15 SWBSTFB I Boost Regulator feedback (2) F14 GNDSWBST GND Ground for regulator boost LD0 Regulators I VREFDDR regulator output J14 VINREFDDR I VREFDDR regulator output J15 VREFDDR O VREFDDR regulator output J15 VHALF O Half supply reference for VREFDDR L15 VINPLL I VPLL input supply K14 VPLL O VPLL regulator output N14 VDACORV O Drive output for VDAC regulator using an external PNP device P15 VDAC O VDAC regulator output N15 LDOVDD I Supply pin for VUSB2, VDAC, and VGEN2 Must be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure.24 for a typical connection diagram. D2 VUSB O USB transceiver regulator output D1 VINUSB I VUSB2 input supply C1 GNDUSB	N9	GNDREF1	GND	Ground reference for regulators
H15SWBSTFBIBoost Regulator feedback (2)F14GNDSWBSTGNDGround for regulator boostLDO RegulatorsJ14VINREFDDRIVREFDDR input supplyK15VREFDDROVREFDDR regulator outputJ15VHALFOHalf supply reference for VREFDDRL15VINPLLIVPLL input supplyK14VPLLOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2N15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2D1VINUSBIVUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINCEN1IVUSB2 input using internal PMOS FETP14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVGEN1 input supplyH14VINCEN1IVGEN1 input supplyH14VINCEN1IVGEN1 input supplyH14VINCEN1IVGEN2 regulator outputH14VGEN2OVGEN2 regulator outputH14VGEN2O <td>F15</td> <td>SWBSTIN</td> <td>I</td> <td>Boost Regulator BP supply ⁽²⁾</td>	F15	SWBSTIN	I	Boost Regulator BP supply ⁽²⁾
F14GNDSWBSTGNDGround for regulator boostLDO RegulatorsJ14VINREFDDRIVREFDDR input supplyK15VREFDDROVREFDDR regulator outputJ15VHALFOHalf supply reference for VREFDDRL15VINPLLIVPLL input supplyK14VPLLOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN14VDACDRVODrive output for VUSB2, VDAC, and VGEN2N15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2N15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2Must be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputH14VINGEN1IVGEN2 regulator outputH15VGEN2OVUSB2 regulator outputH14VINGEN1IVGEN1 regulator outputH14VINGEN1OVGEN2 regulator outputH14VGEN2OVGEN2 regulator outputH2VSRTC	G14	SWBSTLX	0	SWBST switch node connection ⁽²⁾
LOD RegulatorsJ14VINREFDDRIVREFDDR input supplyK15VREFDDROVREFDDR regulator outputJ15VHALFOHalf supply reference for VREFDDRL15VINPLLIVPLL input supplyK14VPLLOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2N15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETH14VINGEN1IVGEN1 regulator outputH14VGEN2OVUSB2 regulator outputH14VGEN2OVUSB2 regulator outputH14VGEN2OVUSB2 regulator outputH14VINGEN1IVGEN1 regulator outputH14VINGEN1IVGEN1 regulator outputH15VGEN2OVGEN2 regulator outputH14VISE2OVISE2 regulator outputH14VGEN2OVGEN2 regulator outputH14VGEN2OVGEN2 regulator outputH14GNDREG1GNDGround for VGEN2 regulator using an external PNP deviceM15VGEN2O	H15	SWBSTFB	I	Boost Regulator feedback ⁽²⁾
J14VINREFDDRIVREFDDR input supplyK15VREFDDROVREFDDR regulator outputJ15VHALFOHalf supply reference for VREFDDRL15VINPLLIVPLL input supplyK14VPLLOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2N15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputH14VINGEN1IVGEN2 input using internal PMOS FETL14VGEN2RVOVGEN1 regulator outputH14VISE1OVGEN1 regulator outputH15VGEN2OVGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH14GNDREG1GNDGround for VGEN2 regulator using an external PNP deviceM14GNDREG1GNDGround for Regulator output	F14	GNDSWBST	GND	Ground for regulator boost
K15VREFDDROVREFDDR regulator outputJ15VHALFOHalf supply reference for VREFDDRL15VINPLLIVPLL input supplyK14VPLLOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN15LDOVDDISupply pin for VUS82, VDAC, and VGEN2N15LDOVDDISupply pin for VUS82, VDAC, and VGEN2D1VINUSBIVUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputH14VINGEN1IVGEN1 input supplyH15VGEN2OVUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH15VGEN2OVGEN2 regulator outputH14VISEN2OVGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH14VISEN2OVGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator using an external PNP deviceM15VGEN2O <t< td=""><td>LDO Regulators</td><td></td><td></td><td></td></t<>	LDO Regulators			
J15VHALFOHalf supply reference for VREFDDRL15VINPLLIVPLL input supplyK14VPLLOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2N15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputL14VGEN2OVGEN2 input using internal PMOS FETL14VGEN2OVGEN1 regulator outputH15VGEN2OVGEN2 regulator outputH14GNDREG1GOH2VSRTCOOutput for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH2VSRTCOOutput regulator outputH2VSRTCOOutput regulator outputH2VSRTCOOutput regulator outputH2VSRTCOOutput regulator outputH2VSRTCOOutput regulator output	J14	VINREFDDR	I	VREFDDR input supply
L15VINPLLIVPLL input supplyK14VPLLOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2N15LDOVDDIMust be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputL14VGEN2DRVIVGEN2 input using internal PMOS FETL14VGEN2DRVODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 input using internal PMOS FETL14VGEN2DRVODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH2VSRTCOOM14GNDREG1GNDGround for Regulator for SRTC module on processorM14GNDREG1GNDGround for Regulator 1	K15	VREFDDR	0	VREFDDR regulator output
K14VPLLOVPLL regulator outputN14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2 Must be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 regulator outputH12VGEN1OVGEN1 regulator outputH14VINGEN1IVGEN2 regulator outputH14VGEN2DRVODrive output for VUSB2 regulator using an external PNP deviceM15VGEN2OVGEN2 input using internal PMOS FETL14VGEN2DRVODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 input using internal PMOS FETL14VGEN2DRVODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH2VSRTCOOM14GNDREG1GNDGround for Regulator 1	J15	VHALF	0	Half supply reference for VREFDDR
N14VDACDRVODrive output for VDAC regulator using an external PNP deviceP15VDACOVDAC regulator outputN15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2 Must be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputL14VGEN2RVODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 input using internal PMOS FETL14VOREN1IVGEN2 regulator outputH12VGEN2OVGEN2 regulator outputH14VISENODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 input using internal PMOS FETL14VGEN2ODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH2VSRTCOOOutput regulator for SRTC module on processorM14GNDREG1GNDGround for Regulator 1	L15	VINPLL	I	VPLL input supply
P15VDACOVDAC regulator outputN15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2 Must be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2OVUSB2 regulator outputH14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 regulator outputL14VGEN2DRVIVGEN2 input using internal PMOS FETL14VGEN2DRVOVISB2 regulator outputH15VGEN2OVGEN2 regulator outputH2VSRTCOOttput for VGEN2 regulator using an external PNP deviceM14GNDREG1GNDGround for VGEN2 regulator using an external PNP device	K14	VPLL	0	VPLL regulator output
N15LDOVDDISupply pin for VUSB2, VDAC, and VGEN2 Must be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputH14VGEN2DRVIVGEN2 input using internal PMOS FETH14VGEN2DRVOODrive output for VUSB regulator using an external PNP deviceH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputH14VGEN2DRVIVGEN2 input using internal PMOS FETH14VGEN2DRVODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH2VSRTCOOutput regulator for SRTC module on processorM14GNDREG1GNDGround for Regulator 1	N14	VDACDRV	0	Drive output for VDAC regulator using an external PNP device
N15LDOVDDIMust be always connected to the same supply as the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 24 for a typical connection diagram.D2VUSBOUSB transceiver regulator outputD1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputL14VGEN2DRVODrive output for VUSB2 regulator using an external PNP deviceM15VGEN2OVGEN2 input using internal PMOS FETH2VGEN2OVGEN2 regulator outputH2SRTCODrive output for VGEN2 regulator using an external PNP deviceM14GNDREG1GNDGround for Regulator output	P15	VDAC	0	VDAC regulator output
D1VINUSBIVUSB input supplyC1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputL14VGEN2DRVIVGEN2 input using internal PMOS FETL14VGEN2DRVODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH2VSRTCOOutput regulator outputH14GNDREG1GNDGround for Regulator 1	N15	LDOVDD	I	Must be always connected to the same supply as the PNP emitter. Recommended to
C1GNDUSBGNDGround for VUSB LDOP14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputL14VGEN2DRVIVGEN2 input using internal PMOS FETL14VGEN2OVGEN2 regulator outputH15VGEN2ODrive output for VGEN2 regulator using an external PNP deviceH12VSRTCOOutput regulator outputH2VSRTCOOutput regulator outputH14GNDREG1GNDGround for Regulator 1	D2	VUSB	0	USB transceiver regulator output
P14VUSB2DRVIVUSB2 input using internal PMOS FETP14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputL14VGEN2DRVIVGEN2 input using internal PMOS FETL14VGEN2DRVODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH2VSRTCOOutput regulator for SRTC module on processorM14GNDREG1GNDGround for Regulator 1	D1	VINUSB	I	VUSB input supply
P14VUSB2DRVODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputL14VGEN2DRVIVGEN2 input using internal PMOS FETL14VGEN2OVGEN2 regulator outputM15VGEN2OVGEN2 regulator outputH2VSRTCOOutput regulator outputM14GNDREG1GNDGround for Regulator 1	C1	GNDUSB	GND	Ground for VUSB LDO
R14VUSB2ODrive output for VUSB2 regulator using an external PNP deviceR14VUSB2OVUSB2 regulator outputH14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputL14VGEN2DRVIVGEN2 input using internal PMOS FETL14VGEN2ODrive output for VGEN2 regulator using an external PNP deviceM15VGEN2OVGEN2 regulator outputH2VSRTCOOutput regulator for SRTC module on processorM14GNDREG1GNDGround for Regulator 1			I	VUSB2 input using internal PMOS FET
H14VINGEN1IVGEN1 input supplyH12VGEN1OVGEN1 regulator outputH12VGEN1OVGEN1 regulator outputL14VGEN2DRVIVGEN2 input using internal PMOS FETM15VGEN2ODrive output for VGEN2 regulator using an external PNP deviceH2VSRTCOOutput regulator for SRTC module on processorM14GNDREG1GNDGround for Regulator 1	P14	VUSB2DRV	0	Drive output for VUSB2 regulator using an external PNP device
H12VGEN1OVGEN1 regulator outputL14VGEN2DRVIVGEN2 input using internal PMOS FETM15VGEN2ODrive output for VGEN2 regulator using an external PNP deviceH2VSRTCOOutput regulator outputM14GNDREG1GNDGround for Regulator 1	R14	VUSB2	0	VUSB2 regulator output
L14 I VGEN2DRV 0 Drive output for VGEN2 regulator using an external PNP device M15 VGEN2 O H2 VSRTC O M14 GNDREG1 GND	H14	VINGEN1	I	VGEN1 input supply
L14 VGEN2DRV O Drive output for VGEN2 regulator using an external PNP device M15 VGEN2 O VGEN2 regulator output H2 VSRTC O Output regulator for SRTC module on processor M14 GNDREG1 GND Ground for Regulator 1	H12	VGEN1	0	VGEN1 regulator output
O Drive output for VGEN2 regulator using an external PNP device M15 VGEN2 O VGEN2 regulator output H2 VSRTC O Output regulator for SRTC module on processor M14 GNDREG1 GND Ground for Regulator 1			I	VGEN2 input using internal PMOS FET
H2 VSRTC O Output regulator for SRTC module on processor M14 GNDREG1 GND Ground for Regulator 1	L14 VGEN2DRV		0	Drive output for VGEN2 regulator using an external PNP device
M14 GNDREG1 GND Ground for Regulator 1	M15	VGEN2	0	VGEN2 regulator output
	H2	VSRTC	0	Output regulator for SRTC module on processor
J12 GNDREG2 GND Ground for Regulator 2	M14	GNDREG1	GND	Ground for Regulator 1
	J12	GNDREG2	GND	Ground for Regulator 2

Table 3. Pin Definitions (continued)

Pin Number	Pin Name	Pin Function	Definition
C8	GPIOVDD	I	Supply for GPIOLV pins
C7	GPIOLV0	I/O	General purpose input/output 1
B7	GPIOLV1	I/O	General purpose input/output 2
В9	GPIOLV2	I/O	General purpose input/output 3
E10	GPIOLV3	I/O	General purpose input/output 4
A8	PWM1	0	PWM output 1
A7	PWM2	0	PWM output 2
C9	GNDGPIO	GND	GPIO ground
Clock/RTC/Coin	Cell		
		I	1. Coin cell supply input
M2	LICELL	0	2. Coin cell charger output
E1	XTAL1	I	32.768 kHz Oscillator crystal connection 1
G1	XTAL2	I	32.768 kHz Oscillator crystal connection 2
F1	GNDRTC	GND	Ground for the RTC block
F3	CLK32KVCC	I	Supply voltage for 32 k buffer
E3	CLK32K	0	32 kHz Clock output for peripherals
G3	CLK32KMCU	0	32 kHz Clock output for processor
Control Logic			
B5	RESETB	0	Reset output for peripherals
D5	RESETBMCU	0	Reset output for processor
K3	WDI	I	Watchdog input
P1	STANDBY	I	Standby input signal from processor
B4	INT	0	Interrupt to processor
A6	PWRON1	I	Power on/off button connection 1
E5	PWRON2	I	Power on/off button connection 2
A5	GLBRST	I	Global Reset
G6	PUMS1	I	Power up mode supply setting 1
G5	PUMS2	I	Power up mode supply setting 2
F6	PUMS3	I	Power up mode supply setting 3
F5	PUMS4	I	Power up mode supply setting 4
E6	PUMS5	I	Power up mode supply setting 5
A9	ICTEST	I	Connect to GND for normal operation
B6	GNDCTRL	GND	Ground for control logic
A4	SPIVCC	I	Supply for SPI bus
B2	CS	I	Primary SPI select input
B1	CLK	I	Primary SPI clock input
B3	MOSI	I	Primary SPI write input

Table 3. Pin Definitions (continued)

Pin Number	Pin Name	Pin Function	Definition
A3	GNDSPI	GND	Ground for SPI interface
A to D Converter			
H6	ADIN9	I	ADC generic input channel 9
J5	ADIN10	I	ADC generic input channel 10
J6	ADIN11	ļ	ADC generic input channel 11
K5	TSX1	ļ	Touch Screen Interface X1 or ADC generic input channel 12
L4	TSX2	I	Touch Screen Interface X2 or ADC generic input channel 13
L6	TSY1		Touch Screen Interface Y1 or ADC generic input channel 14
L3	TSY2	I	Touch Screen Interface Y2 or ADC generic input channel 15
K6	TSREF	0	Touch screen reference
H5	GNDADC	GND	Ground for A to D circuitry

Substrate Grounds

K8	SUBSREF	GND	Substrate ground connection
K9	SUBSPWR	GND	Substrate ground connection
E8			
F8			
F9			
G8		GND	Substrate ground connection
G9	SUBSPWR1	GND	
H8			
H9			
J9			
E11	SUBSPWR2	GND	Substrate ground connection
G10	SUBSPWR3	GND	Substrate ground connection
H10	SUBSLDO	GND	Substrate ground connection
K12	SUBSANA1 GND	Substrate ground connection	
F10	SUBSANA2	GND	Substrate ground connection
J8	SUBSGND	GND	Substrate ground connection

No connects

B15 NC - Do not connect R1		-	Do not connect	
-------------------------------	--	---	----------------	--

Notes

2. If a switching regulator is not used, connect the regulator pins as follows:

SWxVIN = BP, SWxLX = NC, SWxFB = GND, SWxPWGD = NC, SWxCFG = GND

5 General Product Characteristics

5.1 Maximum Ratings

Table 4. Maximum Ratings

All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (Rating)	Min.	Max.	Unit	Notes
ELECTRICAL	RATINGS		4		
	Input Supply Pins				
V _{BP}	• BP	-	4.8	V	
V _{LICELL}	• LICELL	-	4.8		
	IC Core Reference				
	• VCOREREF	-	1.5	v	
	VCOREDIG, VDDLP	-	1.6	V	
	• VCORE	-	3.6		
	Switching Regulators Pins				
	 SWxIN, SWxLX, SWBSTFB 	-	5.5	Ň	
	SWxFB, SWxPWGD, SWxCFG	-	3.6	V	
	• SWBSTLX	-	7.5		
	LDO Regulator Pins				
	VREFDDR, VHALF	-	1.5		
	 VPLL, VGEN1, VINGEN1, VSRTC 	-	2.5	Ň	
	 VINREFDDR, VDAC, VUSB2, VGEN2, VUSB 	-	3.6	V	
	 VINPLL, VDACDRV, VUSB2DRV, VGEN2DRV 	-	4.8		
	LDOVDD, VINUSB	-	5.5		
	GPIO Pins				
	GPIOVDD, GPIOLVx, PWMx	-	2.5	V	
	Control Logic Pins				
	• ICTEST	-	1.8		
	• XTAL1, XTAL2	-	2.5	V	
	CLK32KVCC, CLK32K, CLK32KMCU, WDI, STANDBY,INT, PWRON1, PWRON2, GLBRST, PUMSx, SPIVCC, CS, CLK, MOSI, MISO, SDWNB	-	3.6		
	ADC Interface Pins				
	• ADINx, TSX1/ADIN12, TSX2/ADIN13, TSY1/ADIN14, TSY2/ADIN15, TSREF	-	4.8	V	(4) _, (5)
	ESD Ratings				
V _{ESD}	Human Body Model All pins	-	±2000	V	(3)
	Charge Device Model All pins	-	±500		(3)

Notes

 ESD testing is performed in accordance with the Human Body Model (HBM) (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω), and the Charge Device Model (CDM), Robotic (C_{ZAP} = 4.0 pF).

4. ADINx must not exceed BP.

5. TSXx and TSYx must not exceed BP or VCORE.

5.2 Thermal Characteristics

The thermal rating data of the packages has been simulated with the results listed in Table 5.

Table 5. Thermal Ratings

Symbol	Description (Rating)	Min.	Max.	Unit	Notes
HERMAL RA	ATINGS		1	1	
T _A	Ambient Operating Temperature Range	-40	85	°C	
TJ	Operating Junction Temperature Range	-40	125	°C	
T _{ST}	Storage Temperature Range	-65	150	°C	
T _{PPRT}	Peak Package Reflow Temperature During Reflow	-	Note 6	°C	(6), (7)
HERMAL RE	SISTANCE AND PACKAGE DISSIPATION RATINGS		•	•	
R _{θJA}	Junction to Ambient Natural Convection Single layer board (1s) 	-	93	°C/W	(8), (9)
R _{θJMA}	Junction to Ambient Natural Convection Four layer board (2s2p) 	-	53	°C/W	(8), (10)
R _{θJMA}	Junction to Ambient (@200 ft/min.) Single layer board (1s) 	-	80	°C/W	(8), (10)
R _{θJMA}	Junction to Ambient (@200 ft/min.) Four layer board (2s2p) 	-	49	°C/W	(8), (10)
$R_{\theta J B}$	Junction to Board	-	34	°C/W	(11)
R _{θJC}	Junction to Case	-	25	°C/W	(12)

THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS (CONTINUED)

Notes

- 6. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a malfunction or permanent damage to the device.
- Freescale's Package Reflow capability meets the Pb-free requirements for JEDEC standard J-STD-020C, for Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL).
- 8. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 9. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 10. Per JEDEC JESD51-6 with the board horizontal.
- 11. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 12. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 13. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol $R_{\theta JA}$ or θJA (Theta-JA) strictly for junction-to-ambient thermal resistance on a 1s test board in natural convection environment. $R_{\theta JMA}$ or θJMA (Theta-JMA) will be used for both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated that the generic name, Theta-JA, will continue to be commonly used.

The JEDEC standards can be consulted at <u>http://www.jedec.org/</u>

5.2.1 Estimation of Junction Temperature

An estimation of the chip junction temperature TJ can be obtained from the equation

• $T_J = T_A + (R_{\theta JA} \times P_D)$

where

- T_A = Ambient temperature for the package in °C
- $R_{\theta,JA}$ = Junction to ambient thermal resistance in °C/W
- P_D = Power dissipation in the package in W

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board $R_{\theta JA}$ and the value obtained on a four layer board $R_{\theta JMA}$. Actual application PCBs show a performance close to the simulated four layer board value although this may be somewhat degraded in case of significant power dissipated by other components placed close to the device.

At a known board temperature, the junction temperature T_J is estimated using the following equation

• $T_J = T_B + (R_{\theta JB} \times P_D)$

where

- T_B = Board temperature at the package perimeter in °C
- $R_{\theta JB}$ = Junction to board thermal resistance in °C/W
- P_D = Power dissipation in the package in W

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.

5.2.2 Power Dissipation

During operation, the temperature of the die should not exceed the maximum junction temperature. To optimize thermal management and avoid overheating, the 34709 PMIC provides a thermal management system. The thermal protection is based on a circuit with a voltage output that is proportional to the absolute temperature. This voltage can be read via the ADC for specific temperature readouts, see Analog to Digital Converter.

This voltage is monitored by an integrated comparator. Interrupts THERM110, THERM120, THERM125, and THERM130 will be generated when crossing in either direction of the thresholds specified in <u>Table 6</u>. The temperature range can be determined by reading the THERMxxxS bits.

Thermal protection is integrated to power off the 34709 PMIC, in case of over dissipation. This thermal protection will act above the maximum junction temperature to avoid any unwanted power downs. The protection is debounced for 8.0 ms in order to suppress any thermal noise. This protection should be considered as a fail-safe mechanism and therefore the application should be designed such that this protection is not tripped under normal conditions. The temperature thresholds and the sense bit assignment are listed in <u>Table 6</u>.

Table 6. Thermal Protection Thresholds

Parameter	Min	Тур	Мах	Units	Notes
Thermal 110 °C threshold (THERM110)	105	110	115	°C	
Thermal 120 °C threshold (THERM120)	115	120	125	°C	
Thermal 125 °C threshold (THERM125)	120	125	130	°C	
Thermal 130 °C threshold (THERM130)	125	130	135	°C	
Thermal warning hysteresis	2.0	-	4.0	°C	(14)
Thermal protection threshold	130	140	150	°C	

Notes

14. Equivalent to approx. 30 mW min, 60 mW max

5.3 Electrical Characteristics

5.3.1 Recommended Operating Conditions

Table 7. Recommended Operating Conditions

Symbol	Description (Rating)	Min.	Max.	Unit	Notes
V _{BP}	Main Input Supply	3.0	4.5	V	
V _{LICELL}	LICELL Backup Battery	1.8	3.6	V	
Τ _Α	Ambient Temperature	-40	85	°C	

5.3.2 General PMIC Specifications

Table 8. Pin Logic Thresholds

Pin Name	Internal Termination ⁽¹⁹⁾	Parameter	Load Condition	Min	Max ⁽²²⁾	Unit	Notes
PWRON1, PWRON2,	Pull-up	Input Low	47 kOhm	0.0	0.3	V	(16)
GLBRST	r un-up	Input High	1.0 MOhm	1.0	VCOREDIG	V	(16)
STANDBY, WDI	Weak Pull-down	Input Low	-	0.0	0.3	V	(21)
STANDET, WDI	Weak Full-down	Input High	-	0.9	3.6	V	(21)
CLK32K	CMOS	Output Low	-100 μA	0.0	0.2	V	
GERGZR	CMOS	Output High	100 μA	CLK32KVCC - 0.2	CLK32KVCC	V	
CLK32KMCU	CMOS	Output Low	-100 μA	0.0	0.2	V	
CERSZRINCO	CMOS	Output High	100 μA	VSRTC - 0.2	VSRTC	V	
RESETB,	Open-drain	Output Low	-2.0 mA	0.0	0.4	V	(20)
RESETBMCU, SDWNB, SW1PWGD, SW2PWGD		Output High	Open-drain	-	3.6	V	(20)
		Input Low	-	0.0	0.3 * GPIOVDD	V	
	CMOS	Input High	-	0.7 * GPIOVDD	GPIOVDD + 0.3	V	
GPIOLV1,2,3,4		Output Low	-	0.0	0.2	V	
GFIOLV 1,2,3,4		Output High	-	GPIOVDD - 0.2	GPIOVDD	V	
	Open-drain	Output Low	-2.0 mA	0.0	0.4	V	
	Open-drain	Output High	Open-drain	-	GPIOVDD + 0.3	V	
PWM1, PWM2	CMOS	Output Low	-	0.0	0.2	V	
	CMOS	Output High	-	GPIOVDD - 0.2	GPIOVDD	V	
		Input Low	-	0.0	0.3 * SPIVCC	V	(15)
CLK, MOSI		Input High	-	0.7 * SPIVCC	SPIVCC + 0.3	V	(15)
CS	Weak Pull-down	Input Low	-	0.0	0.4	V	(15)
00		Input High	-	1.1	SPIVCC + 0.3	V	(15)
CS, MOSI (at Booting	Weak Pull-down	Input Low	-	0.0	0.3 * VCOREDIG	V	(15), (23)
for SPI / I ² C decoding)	on CS	Input High	-	0.7 * VCOREDIG	VCOREDIG	V	(15), (23)

34709

Pin Name	Internal Termination ⁽¹⁹⁾	Parameter	Load Condition	Min	Max ⁽²²⁾	Unit	Notes
MISO, INT	CMOS	Output Low	-100 μA	0.0	0.2	V	MISO (15) (24)
MISO, INT	CMOS	Output High	100 μA	SPIVCC - 0.2	SPIVCC	V	MISO (15) (24)
DUMS1 2 2 4 5		Input Low PUMSxS = 0	-	0.0	0.3	V	(17)
PUMS1,2,3,4,5		Input High PUMSxS = 1	-	1.0	VCOREDIG	V	(17)
ICTEST		Input Low	-	0.0	0.3	V	(18)
ICTEST		Input High	-	1.1	1.7	V	(18)
		Input Low	-	0.0	0.3	V	
SW1CFG, SW4CFG		Input Mid	-	1.3	2.0	V	
		Input High	-	2.5	3.1	V	

Table 8. Pin Logic Thresholds

Notes

15. SPIVCC is typically connected to the output of buck regulator SW5 and set to 1.800 V

16. Input has internal pull-up to VCOREDIG equivalent to 200 kOhm

17. Input state is latched in first phase of cold start, refer to Serial Interfaces for a description of the PUMS configuration

18. Input state is not latched

19. A weak pull-down represents a nominal internal pull-down of 100 nA, unless otherwise noted

20. RESETB, RESETBMCU, SDWNB, SW1PWGD, SW2PWGD have open-drain outputs, external pull-ups are required

21. SPIVCC needs to remain enabled for proper detection of WDI High to avoid involuntary shutdown

22. The maximum should never exceed the maximum rating of the pin as given in Pin Connections

23. The weak pull-down on CS is disabled if a VIH is detected at start-up to avoid extra consumption in I²C mode

24. The output drive strength is programmable

5.3.3 Current Consumption

Table 9 provides the current consumption for standard use cases.

Table 9. Current Consumption Summary ⁽²⁷⁾

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Mode	Description	Тур	Max	Unit	Notes
	All blocks disabled, BP=0, coin cell is attached to LICELL (at 25 °C only)				
	RTC Logic				
RTC / Power	VCORE Module	4.0	8.0	μA	
cut	• VSRTC				
	32 k Oscillator				
	Clk32KMCU buffer active(10 pF load)				
	All blocks disabled, BP>3.0 V(at 25 °C only)				
	Digital Core				
	RTC Logic				
OFF (good	VCORE Module			•	
battery)	• VSRTC	20	55	μΑ	
	32 k Oscillator				
	 CLK32KMCU buffer active (10 pF load) 				
	• COINCHEN = 0				
	Low-power Mode (Standby pin asserted and ON_STBY_LP=1)				
	Digital core				
	RTC logic				
	VCORE module				
	• VSRTC				
ON Standby	 CLK32KMCU/CLK32K active (10 pF load) 	260	650		
ON Standby	32 k oscillator	200	000	μA	
	• I _{REF}				
	 SW1, SW2, SW3, SW4A, SW4B, SW5 in PFM ^{(26),(29)} 				
	 VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC 				
	SWBST off				
	in low-power mode ^{(25),(28)}				

Table 9. Current Consumption Summary (27)

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Mode	Description	Тур	Max	Unit	Notes
	Digital core				
	RTC logic				
	VCORE module				
	• VSRTC				
	CLK32KMCU/CLK32K active (10 pF load)				
	32 k oscillator				
ON Standby	• Digital	370	750	μA	
	• I _{REF}				
	 SW1, SW2, SW3, SW4A, SW4B, SW5 in PFM ^{(26),(29)} 				
	 VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC on in low-power mode (26),(28) 				
	SWBST off				
	• PLL				

Notes

25. Equivalent to approx. 30 mW min, 60 mW max

26. Current in RTC Mode is from LICELL=2.5 V; in all other modes from BP = 3.6 V.

27. External loads are not included

28. VUSB2, VGEN2 external pass PNPs

29. SW4A output 2.5 V

6 General Description

6.1 Features

Power Generation

- · Six buck switching regulators
 - Two single/dual phase buck regulators
 - Three single phase buck regulators
 - Up to six independent outputs
 - PFM/PWM operation mode
 - Dynamic voltage scaling
- · Boost regulator
 - Support for USB physical layer on i.MX processor (USB PHY)
- Eight LDO regulators
 - · Two with selectable internal or external pass devices
 - Four with embedded pass devices
 - · One with an external PNP device
 - · Voltage reference for DDR memory with internal PMOS device

Analog to Digital Converter

- Seven general purpose channels
- · Dedicated channels for monitoring die temperature and coin cell voltage
- Resistive touchscreen interface

Auxiliary Circuits

- · General purpose I/Os
- PWM outputs

Clocking and Oscillators

- Real time clock
 - · Time and day counters
 - · Time of day alarm
- · 32.768 kHz crystal oscillator
 - · Coin cell battery backup and charger

Serial Interface

- SPI
- I²C

34709

6.2 Block Diagram

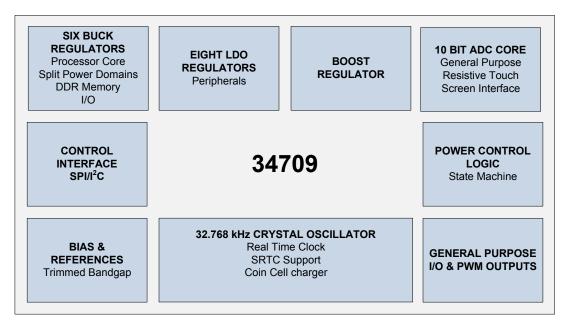


Figure 4. Functional Block Diagram

7 Functional Block Description

7.1 Start-up Requirements

Upon application of power, there is an initial delay of 8.0 ms during which the core circuitry is enabled. Then the switching and linear regulators are sequentially enabled in time slots of 2.0 ms steps. This allows the PMIC to limit the inrush current.

The outputs of the switching regulators not enabled, are discharged with weak pull-downs on the output to ensure a proper power-up sequence. Any under-voltage detection at BP is masked while the power-up sequencer is running. When the switching regulators are enabled, they will start in PWM mode, After 3.0 ms the switching regulators will transition to the mode programmed in the SPI register map.

The Power-up Mode Select pins PUMSx (x = 1,2,3,4,5) are used to configure the start-up characteristics of the regulators. Supply enabling and output level options are selected by hardwiring the PUMSx pins. It is recommended to minimize the load during system boot-up by supplying only the essential voltage domains. This allows the start-up transients to be minimized after which the rest of the system power tree can be brought up by software. The PUMSx pins also allows optimization of the supply sequence and default values. Software code can load the required programmable options without any change to hardware.

The state of the PUMSx pins are latched before any of the regulators are enabled, with the exception of VCORE. PUMSx options and start-up configurations are robust to a PCUT event, whether occurring during normal operation or during the 8.0 ms of presequencer initialization, i.e. the system will not end up in an unexpected / undesirable consumption state.

Table 10 shows the initial setup for the voltage level of the switching and linear regulators, and whether they get enabled or not.

i.MX	Reserved	53 LPM	53 DDR2	53 DDR3	53 LVDDR3	53 LVDDR2	50 mDDR	50 LPDDR2	50 LPDDR2	50 mDDR	50 LPDDR2	50 mDDR
PUMS[4:1]	0000-0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
PUMS5=0 VUSB2 VGEN2	Reserved	Ext PNP										
PUMS5=1 VUSB2 VGEN2	Reserved	Internal PMOS										
SW1A (VDDGP)	Reserved	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
SW1B (VDDGP)	Reserved	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
SW2 ⁽³⁰⁾ (VCC)	Reserved	1.225	1.3	1.3	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.2
sw3 ⁽³⁰⁾ (VDDA)	Reserved	1.2	1.3	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
SW4A ⁽³⁰⁾ (DDR/SYS)	Reserved	1.5	1.8	1.5	1.35	1.2	1.8	1.2	3.15	3.15	3.15	3.15
SW4B ⁽³⁰⁾ (DDR/SYS)	Reserved	1.5	1.8	1.5	1.35	1.2	1.8	1.2	1.2	1.8	1.2	1.8
SW5 ⁽³⁰⁾ (I/O)	Reserved	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
SWBST	Reserved	Off										
VUSB ⁽³¹⁾	Reserved	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
VUSB2	Reserved	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5

Table 10. Power-up Defaults

34709

Table 10. Power-up Defaults

i.MX	Reserved	53 LPM	53 DDR2	53 DDR3	53 LVDDR3	53 LVDDR2	50 mDDR	50 LPDDR2	50 LPDDR2	50 mDDR	50 LPDDR2	50 mDDR
VSRTC	Reserved	1.2	1.3	1.3	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.2
VPLL	Reserved	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
VREFDDR	Reserved	On	On	On	On	On	On	On	On	On	On	On
VDAC	Reserved	2.775	2.775	2.775	2.775	2.775	2.5	2.5	2.5	2.5	2.5	2.5
VGEN1	Reserved	1.2	1.3	1.3	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.2
VGEN2	Reserved	2.5	2.5	2.5	2.5	2.5	3.1	3.1	3.1	3.1	2.5	2.5

Notes

30. The SWx node are activated in APS mode when enabled by the start-up sequencer.

31. VUSB is supplied by SWBST.

The power-up sequence is shown in <u>Tables 11</u> and <u>12</u>. VCOREDIG, VSRTC, and VCORE, are brought up in the pre-sequencer start-up.

Tap x 2.0 ms	PUMS [4:1] = [0101,0110,0111,1000,1001] (i.MX53)
0	SW2 (VCC)
1	VPLL (NVCC_CKIH = 1.8 V)
2	VGEN2 (VDD_REG= 2.5 V, external PNP)
3	SW3 (VDDA)
4	SW1A/B (VDDGP)
5	SW4A/B, VREFDDR (DDR/SYS)
6	
7	SW5 (I/O), VGEN1
8	VUSB, VUSB2
9	VDAC

Table 11. Power-up Sequence i.MX53

Table 12. Power-up Sequence i.MX50

Tap x 2.0 ms	PUMS [4:1] = [0100, 1011, 1100, 1101, 1110, 1111] (i.MX50/I.MX53)
0	SW2
1	SW3
2	SW1A/B
3	VDAC
4	SW4A/B, VREFDDR
5	SW5
6	VGEN2, VUSB2
7	VPLL
8	VGEN1
9	VUSB

7.2 Bias and References Block

All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. The bandgap and the rest of the core circuitry is supplied from VCORE. The performance of the regulators is directly dependent on the performance of VCORE and the bandgap. No external DC loading is allowed on VCOREDIG or VCOREREF. VCOREDIG is kept powered as long as there is a valid supply and/or coin cell. <u>Table 13</u> shows the main characteristics of the core circuitry.

Table 13. Core Voltages Electrical Specifications

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Mir	ו	Тур	Max	Unit	Notes
COREDIG	(DIGITAL CORE SUPPLY)						
	Output voltage					V	
V _{COREDIG}	ON mode	-		1.5	-		(32)
	 OFF with good battery and RTC mode 	-		1.2	-		(/
C _{COREDIG}	V _{COREDIG} bypass capacitor	-		1.0	-	μF	
/DDLP (DIG	ITAL CORE SUPPLY - LOWER POWER)	·					
	Output voltage					V	
V _{DDLP}	ON mode with good battery	-		1.5	-		
	 OFF mode with good battery 	-		1.2	-		(33)
	RTC mode	-		1.2	-		
C _{DDLP}	V _{DDLP} bypass capacitor	-		100	-	pF	(34)
CORE (AN	ALOG CORE SUPPLY)	I			L	l	-
	Output voltage					V	
V _{CORE}	ON mode and charging	-		2.775	-		(32)
CONL	OFF and RTC mode	-		0.0	-		(32)
C _{CORE}	V _{CORE} bypass capacitor	-		1.0	-	μF	
COREREF	(BANDGAP / REGULATOR REFERENCE)				1	1	-
V _{COREREF}	Output voltage	-		1.2	-	V	(32)
				<u> </u>		A /	1

VCOREREF	Oulput voltage	-	1.2	-	V	(02)
	Absolute accuracy	-	0.5	-	%	
	Temperature drift	-	0.25	-	%	
C _{CREREF}	V _{COREREF} bypass capacitor	-	100	-	nF	

Notes

32. 3.0 V < BP < 4.5 V, no external loading on VCOREDIG, VDDLP, VCORE, or VCOREREF. Extended operation down to UVDET, but no system malfunction.

33. Powered by VCOREDIG

34. Maximum capacitance on V_{DDLP} should not exceed 1000 pF, including the board capacitance.

7.3 Clocking and Oscillators

7.3.1 Clock Generation

A system clock is generated for internal digital circuitry as well as for external applications utilizing the clock output pins. A crystal oscillator is used for the 32.768 kHz time base and generation of related derivative clocks. If the crystal oscillator is not running (for example, if the crystal is not present), an internal 32 kHz oscillator will be used instead.

Support is also provided for an external Secure Real Time Clock (SRTC), which may be integrated on a companion system processor IC. For media protection in compliance with Digital Rights Management (DRM) system requirements, the CLK32KMCU can be provided as a reference to the SRTC module where tamper protection is implemented.

7.3.1.1 Clocking Scheme

The internal 32 kHz oscillator is an integrated backup for the crystal oscillator, and provides a 32.768 kHz nominal frequency at \pm 60% accuracy, if running. The internal oscillator only runs if a valid supply is available at BP, and would not be used as long as the crystal oscillator is active. In absence of a valid supply at the BP supply node (for instance due to a dead battery), the crystal oscillator continues running supplied from the coin cell battery. All control functions will run off the crystal derived frequency, occasionally referred to as "32 kHz" for brevity's sake.

During the switchover between the two clock sources (such as when the crystal oscillator is starting up), the output clock is maintained at a stable active low or high phase of the internal 32 kHz clock to avoid any clocking glitches. If the XLTAL clock source suddenly disappears during operation, the IC will revert back to the internal clock source. Given the unpredictable nature of the event and the start-up times involved, the clock may be absent long enough for the application to shut down during this transition.

A status bit, CLKS, is available to indicate to the processor which clock is currently selected: CLKS=0 when the internal RC is used and CLKS=1 if the crystal source is used. The CLKI interrupt bit will be set whenever a change in the clock source occurs, and an interrupt will be generated if the corresponding CLKM mask bit is cleared.

7.3.1.2 Oscillator Specifications

The crystal oscillator has been optimized for use in conjunction with the Micro Crystal CC7V-T1A32.768 kHz-9.0 pF-30 ppm or equivalent (such as Micro Crystal CC5V-T1A or Epson FC135) and is capable of handling its parametric variations. Ensure that the chosen crystal has a typical drive level of 0.5 μ W or above to ensure proper operation of the crystal oscillator. Using a crystal with a lower drive level can cause overtone oscillations

The electrical characteristics of the 32 kHz Crystal oscillator are given in the following table, taking into account the crystal characteristics noted above. The oscillator accuracy depends largely on the temperature characteristics of the used crystal. Application circuits can be optimized for required accuracy by adapting the external crystal oscillator network (via component accuracy and/or tuning). Additionally, a clock calibration system is provided to adjust the 32,768 cycle counter that generates the 1.0 Hz timer and RTC registers; see SRTC Support for more detail.

Table 14. Oscillator and Clock Main Electrical Specifications

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes
OSCILLATO	R AND CLOCK OUTPUT				•	
V _{INRTC}	Operating Voltage Oscillator and RTC Block from BP Oscillator and RTC Block from LICELL 	1.8 1.8	-	4.5 3.6	V	
I _{INRTC}	 Operating Current Crystal Oscillator and RTC Module All blocks disabled, no main battery attached, coin cell is attached to LICELL 	-	2.0	5.0	μA	

Table 14. Oscillator and Clock Main Electrical Specifications

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
+	RTC oscillator start-up time					
t _{START-RTC}	Upon application of power		-	1.0	sec	
OSCILLATO	R AND CLOCK OUTPUT (CONTINUED)					
	Output Low					
V _{RTCLO}	 CLK32K Output sink 100 μA 				V	
	 CLK32KMCU Output source 50 μA 	0.0	-	0.2		
	Output High					
V _{RTCHI}	 CLK32K Output source 100 μA 	CLK32KVCC-0.2	-	CLK32KVCC	V	
	 CLK32KMCU Output sink 50 μA 	VSRTC-0.2	-	VSRTC		
OSCILLATO	R AND CLOCK OUTPUT (CONTINUED)					L
	CLK32K Rise and Fall Time, CL = 50 pF					
	 CLK32KDRV [1:0] = 00 	-	6.0	-		
t _{CLK32KET}	 CLK32KDRV [1:0] = 01 (default) 	-	2.5	-	ns	
	 CLK32KDRV [1:0] = 10 	-	3.0	-		
	 CLK32KDRV [1:0] = 11 	-	2.0	-		
t _{CKL32K}	CLK32KMCU Rise and Fall Time					
MCUET	• CL = 12 pF	-	22	-	ns	
CLK32K _{DC/}	CLK32K and CLK32KMCU Output Duty Cycle					
CLK32K MCU _{DC}	Crystal on XTAL1, XTAL2 pins	45	-	55	%	
	RMS Output Jitter				ns	
	 1 Sigma for Gaussian distribution 	-	-	30	RMS	

7.3.2 SRTC Support

When configured for DRM mode (SPI bit DRM = 1), the CLK32KMCU driver will be kept enabled through all operational states to ensure that the SRTC module always has its reference clock. If DRM = 0, the CLK32KMCU driver will not be maintained in the Off state.

It is also necessary to provide a means for the processor to do an RTC initiated wake-up of the system if it has been programmed for such capability. This can be accomplished by connecting an open-drain NMOS driver to the PWRON pin of the 34709 PMIC, so that, there is a parallel path for the power key. The 34709 PMIC will not be able to discern the turn on event from a normal power key initiated turn on, but the processor should have the knowledge, since the RTC initiated turn on is generated locally.

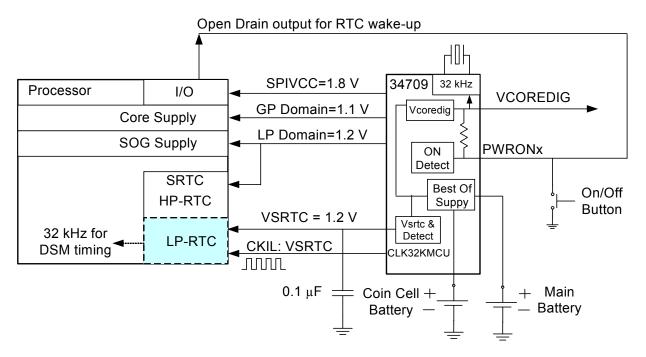


Figure 5. SRTC Block Diagram

7.3.2.1 VSRTC

The VSRTC regulator provides the CLK32KMCU output level. Additionally, it is used to bias the Low-power SRTC domain of the SRTC module integrated on certain FSL processors. The VSRTC regulator is enabled as soon as the RTCPORB is detected. VSRTC cannot be disabled.

Depending on the configuration of the PUMS[4:0] pins, the VSRTC voltage will be set to 1.3 or 1.2 V.

- 1. With PUMS[4:0] = (0110, 0111, 1000, or 1001) VSRTC will be set to 1.3 V in on mode (on, on standby and on standby low-power modes), and it will drop to 1.2 V in off and coin cell modes.
- 2. With PUMS[4:0] different than (0110, 0111, 1000, or 1001), VSRTC will be set to 1.2 V for all modes (on, on standby, on standby low-power mode, off, and coin cell).

Table 15. VSRTC Electrical Specifications

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
GENERAL						J
	Operating Input Voltage Range					
V _{SRTCIN}	Valid Coin Cell range	1.8	-	3.6	V	
on the only	Valid BP	1.8	-	4.5		
I _{SRTC}	Operating Current Load Range	0.0	-	50	μA	(35)
CO _{SRTC}	Bypass Capacitor Value	-	0.1	-	μF	
VSRTC - AC	TIVE MODE - DC		!			-
	Output Voltage					
V _{SRTC}	• V _{SRTCINMIN} < V _{STRCIN} < V _{SRTCINMAX}		4.00	4.00	.,	
	• I _{SRTCMIN} < I _{SRTC} < I _{SRTCMAX}	1.15	1.20	1.28	V	
	Off and coin cell mode					

Table 15. VSRTC Electrical Specifications

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes
VSRTC - AC	TIVE MODE - DC (CONTINUED)		L	•		
V _{SRTC}	Output Voltage • V _{SRTCINMIN} < V _{STRCIN} < V _{SRTCINMAX} • I _{SRTCMIN} < I _{SRTC} < I _{SRTCMAX} • PUMS[4:0] ≠ (0110, 0111, 1000, 1001) • On, Standby, and Standby LPM modes	1.15	1.2	1.25	v	
V _{SRTC}	Output Voltage • V _{SRTCINMIN} < V _{STRCIN} < V _{SRTCINMAX} • I _{SRTCMIN} < I _{SRTC} < I _{SRTCMAX} • PUMS[4:0] = (0110, 0111, 1000, 1001) • On, Standby, and Standby LPM modes	1.25	1.3	1.35	v	
I _{SRTCQ}	Active Mode Quiescent Current • V _{SRTCINMIN} < V _{STRCIN} < V _{SRTCINMAX} • I _{SRTC} = 0	-	0.8	-	μA	
V _{SRTCOS}	Start-up Overshoot (IL = 0.0 mA) Battery insertion Coin cell insertion Switchover Overshoot (IL = 0.0 mA) Battery to coin cell Coin cell to battery 	-	-	1.42	V	(36)

Notes

35. Valid for BP > 2.4 V and/or LICELL > 2.0 V

36. See workaround Figure 24.

7.3.2.2 Real Time Clock

A Real Time Clock (RTC) is provided with time and day counters as well as an alarm function. The RTC utilizes the 32.768 kHz crystal oscillator for the time base and is powered by the coin cell backup supply when BP has dropped below operational range. In configurations where the SRTC is used, the RTC can be disabled to conserve current drain by setting the RTCDIS bit to a 1 (defaults on at power up).

Time and Day Counters

The 32.768 kHz clock is divided into a 1.0 Hz time tick which drives a 17-bit Time Of Day (TOD) counter. The TOD counter counts the seconds during a 24 hour period from 0 to 86,399 and will then roll over to 0. When the roll over occurs, it increments the 15-bit DAY counter. The DAY counter can count up to 32767 days. The 1.0 Hz time tick can be used to generate a 1HZI interrupt if unmasked.

Time Of Day Alarm

A Time Of Day Alarm (TODA) function can be used to turn on the application and alert the processor. If the application is already on, the processor will be interrupted. The TODA and DAYA registers are used to set the alarm time. When the TOD counter is equal to the value in TODA and the DAY counter is equal to the value in DAYA, the TODAI interrupt will be generated.

Timer Reset

As long as the supply at BP is valid, the real time clock will be supplied from VCOREDIG. If BP is not valid, the real time clock can be backed up from a coin cell via the LICELL pin. When the VSRTC voltage drops to the range of 0.9 V to 0.8 V, the RTCPORB reset signal is generated and the contents of the RTC will be reset. Additional registers backed up by coin cell will also reset with RTCPORB. To inform the processor that the contents of the RTC are no longer valid due to the reset, a timer reset interrupt function is implemented with the RTCRSTI bit.

RTC Timer Calibration

A clock calibration system is provided to adjust the 32,768 cycle counter that generates the 1.0 Hz timer for RTC timing registers. The general implementation relies on the system processor to measure the 32.768 kHz crystal oscillator against a higher frequency and more accurate system clock, such as a TCXO. If the RTC timer needs a correction, a 5-bit 2's complement calibration word can be sent via the SPI, to compensate the RTC for inaccuracy in its reference oscillator.

Code in RTCCAL[4:0]	Correction in Counts per 32768	Relative correction in ppm
01111	+15	+458
00011	+3	+92
00001	+1	+31
00000	0	0
11111	-1	-31
11101	-3	-92
10001	-15	-458
10000	-16	-488

Table 16. RTC calibration Settings

The available correction range should be sufficient to ensure drift accuracy in compliance with standards for DRM time keeping. Note that the 32.768 kHz oscillator is not affected by RTCCAL settings; calibration is only applied to the RTC time base counter. Therefore, the frequency at the clock output CLK32K is not affected.

The RTC system calibration is enabled by programming the RTCCALMODE[1:0] for desired behavior by operational mode.

RTCCALMODE	CCALMODE Function			
00	RTC Calibration disabled (default)			
01	RTC Calibration enabled in all modes except coin cell only			
10	Reserved for future use. Do not use.			
11	RTC Calibration enabled in all modes			

Table 17. RTC Calibration Enabling

The RTC Calibration circuitry can be automatically disabled when main battery contact is lost or if it is so deeply discharged that RTC power draw is switched to the coin cell (configured with RTCCALMODE=01).

Because of the low RTC consumption, RTC accuracy can be maintained through long periods of the application being shut down, even after the main battery has discharged. However, it is noted that the calibration can only be as good as the RTCCAL data that has been provided, so occasional refreshing is recommended to ensure that any drift influencing environmental factors have not skewed the clock beyond desired tolerances.

7.3.3 Coin Cell Battery Backup

The LICELL pin provides a connection for a coin cell backup battery or supercap. If the main battery is deeply discharged, removed, or contact-bounced (for example during a power cut), the RTC system and the logic maintained by the coin cell will switch over to the LICELL for backup power. This switch over occurs for a BP below 1.8 V threshold with LICELL greater than 1.8 V. A 0.1 μ F capacitor should be placed from LICELL to ground under all circumstances.

Upon initial insertion of the coin cell, it is not immediately connected to the on chip circuitry. The cell gets connected when the IC powers on, or after enabling the coin cell charger when the IC was already on.

The coin cell charger circuit will function as a current-limited voltage source, resulting in the CC/CV taper characteristic typically used for rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit. The coin cell voltage is programmable through the VCOIN[2:0] bits. The coin cell charger voltage is programmable in the ON state where the charge current is fixed at ICOINHI.

If COINCHEN=1 when the system goes into an Off or User Off state, the coin cell charger will continue to charge to the predefined voltage setting, but at a lower maximum current ICOINLO. This compensates for self discharge of the coin cell and ensures that when the main cell gets depleted, the coin cell will be topped off for maximum RTC retention. The coin cell charging will be stopped for the BP below UVDET. The bit COINCHEN itself is only cleared when an RTCPORB occurs.

Output Voltage
2.50
2.70
2.80
2.90
3.00
3.10
3.20
3.30

Table 18. Coin Cell Voltage Specifications

Table 19. Coin Cell Electrical Specifications

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes			
COIN CELL	COIN CELL CHARGER								
V _{LICELLACC}	Voltage Accuracy	-	100	-	mV				
ILICELLON	Coin Cell Charge Current in On and Watchdog modes ICOINHI	-	60	-	μA				
ILICELLOFF	Coin Cell Charge Current in Off, cold start/warm start, and Low-power Off modes (User Off / Memory Hold) ICOINLO	-	10	-	μA				
ILICELACC	Current Accuracy	-	30	-	%				
CO _{LICELL}	LICELL Bypass Capacitor	-	100	-	nF				
	LICELL Bypass Capacitor as coin cell replacement	-	4.7	-	μF				

7.4 Interrupt Management

7.4.1 Control

The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving the INT pin high; this is true whether the communication interface is configured for SPI or I^2C .

Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each interrupt can be cleared by writing a 1 to the appropriate bit in the Interrupt Status register, which will also cause the interrupt line to go low. If a new interrupt occurs while the processor clears an existing interrupt bit, the interrupt line will remain high.

Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the interrupt line will not go high. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the interrupt line will go high after unmasking.

The sense registers contain status and input sense bits, so the system processor can poll the current state of interrupt sources. They are read only, and not latched or clearable.

Interrupts generated by external events are debounced, therefore, the event needs to be stable throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are provided in <u>Table 20</u>. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.

7.4.2 Interrupt Bit Summary

<u>Table 20</u> summarizes all interrupt, mask, and sense bits associated with INT control. For more detailed behavioral descriptions, refer to the related chapters.

Interrupt	Mask	Sense	Purpose	Trigger	Debounce Time
ADCDONEI	ADCDONEM	-	ADC has finished requested conversions	L2H	0.0
TSDONEI	TSDONEM	-	Touch screen has finished conversion	L2H	0.0
TSPENDET	TSPENDETM	-	Touch screen pen detect	Dual	1.0 ms
LOWBATT	LOWBATTM	-	Low battery detect Sense is 1 if below LOWBATT threshold	H2L	Programmable VBATTDB
SCPI	SCPM	-	Regulator short-circuit protection tripped	L2H	min. 4.0 ms max 8.0 ms
1HZI	1HZM	-	1.0 Hz time tick	L2H	0.0
TODAI	TODAM	-	Time of day alarm	L2H	0.0
PWRON1I	PWRON1M	PWRON1S	Power on button 1 event	H2L	30 ms ⁽³⁷⁾
PWRONII	PWRONIM	PWRONIS	Sense is 1 if PWRON1 is high.	L2H	30 ms
PWRON2I	PWRON2M	PWRON2S	Power on button 2 event	H2L	30 ms ⁽³⁷⁾
FWRONZI	FWRONZIW	FWRON25	Sense is 1 if PWRON2 is high.	L2H	30 ms
SYSRSTI	SYSRSTM	-	System reset through PWRONx pins	L2H	0.0
WDIRESETI	WDIRESETM	-	WDI silent system restart	L2H	0.0
PCI	PCM	-	Power cut event	L2H	0.0
WARMI	WARMM	-	Warm Start event	L2H	0.0
MEMHLDI	MEMHLDM	-	Memory Hold event	L2H	0.0
CLKI	CLKM	CLKS	32 kHz clock source change Sense is 1 if source is XTAL	Dual	0.0
RTCRSTI	RTCRSTM	-	RTC reset has occurred	L2H	0.0
THERM110	THERM110M	THERM110S	Thermal 110 °C threshold Sense is 1 if above threshold	Dual	30 ms
THERM120	THERM120M	THERM120S	Thermal 120 °C threshold Sense is 1 if above threshold	Dual	30 ms
THERM125	THERM125M	THERM125S	Thermal 125 °C threshold Sense is 1 if above threshold	Dual	30 ms
THERM130	THERM130M	THERM130S	Thermal 130 °C threshold Sense is 1 if above threshold	Dual	30 ms
GPIOLVxI	GPIOLVxM	GPIOLVxS	General Purpose input interrupt	Programmable	Programmable

Table 20. Interrupt, Mask and Sense Bits

Notes

37. Debounce timing for the falling edge can be extended with PWRONxDBNC[1:0]; refer to Turn On Events for details.

7.5 Power Generation

The 34709 PMIC provides reference and supply voltages for the application processor as well as peripheral device.

Six buck (step down) converters and one boost (step up) converters are included. One of the buck regulators can be configured in dual phase, single phase mode, or operate as separate independent outputs (in this case, there are six buck converters). The buck converters provide the supply to processor cores and to other low-voltage circuits such as IO and memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments for the processor cores and/or other circuitry. The boost converter supplies the VUSB regulator for the USB PHY on the processor. The VUSB regulator is powered from the boost to ensure sufficient headroom for the LDO through the normal discharge range of the main battery.

Linear regulators could be supplied directly from the battery or from one of the switching regulator, and provide supplies for IO and peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. Naming conventions are suggestive of typical or possible use case applications, but the switching and linear regulators may be utilized for other system power requirements within the guidelines of specified capabilities.

Four general purpose I/Os are available. When configured as inputs they can be used as external interrupts.

7.5.1 Power Tree

<u>Table 21</u> summarizes the available power supplies. Refer to sections Buck Switching Regulators, Boost Switching Regulator, and Linear Regulators (LDOs) for detailed information on performance metrics and operating ranges of each individual supply.

Supply	Purpose (typical application)	Output Voltage (in V)	Load Capability (in mA)
SW1	Buck regulator for processor VDDGP domain	0.650 – 1.4375	2000
SW2	Buck regulator for processor VCC domain	0.650 – 1.4375	1000
SW3	Buck regulator for processor VDD domain and peripherals	0.650 – 1.425	500
SW4A	Buck regulator for DDR memory and peripherals	1.200 – 1.85: 2.5/3.15	500
SW4B	Buck regulator for DDR memory and peripherals	1.200 – 1.85: 2.5/3.15	500
SW5	Buck regulator for I/O domain	1.200 – 1.85	1000
SWBST	Boost regulator for USB PHY support	5.00/5.05/5.10/5.15	380
VSRTC	Secure Real Time Clock supply	1.2	0.05
VPLL	Quiet Analog supply	1.2/1.25/1.5/1.8	50
VREFDDR	DDR Ref supply	0.6 - 0.9	10
VDAC	TV DAC supply, external PNP	2.5/2.6/2.7/2.775	250
	VUSB/peripherals supply, internal PMOS	2.5/2.6/2.75/3.0	65
VUSB2	VUSB/peripherals external PNP	2.5/2.6/2.75/3.0	350
VGEN1	General peripherals supply #1	1.2/1.25/1.3/1.35/1.4/1.45/1.5/1.55	250
	General peripherals supply #2, internal PMOS	2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3	50
VGEN2	General peripherals supply #2, external PNP	2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3	250
VUSB	USB Transceiver supply	3.3	100

Table 21. Power Tree Summary

7.5.2 Modes of Operation

The 34709 PMIC is fully programmable via the SPI interface and associated register map. Additional communication is provided by direct logic interfacing including interrupt, watchdog and reset. Default start-up of the device is selectable by hardwiring the Power-up Mode Select (PUMS) pins.

Power cycling of the application is driven by the 34709 PMIC. It also ensures uninterrupted supply of the Real Time Clock (RTC), critical internal logic, and other circuits from the coin cell, in case of brief interruptions from the main battery. A charger for the coin cell is included to ensure that it is kept charged until needed.

The 34709 PMIC provides the timekeeping based on an integrated low-power oscillator running with a standard watch crystal. This oscillator is used for the internal clocking and the control logic, as well as a reference for the switching PLL. The timekeeping is backed up by the coin cell and it includes time of day, calendar and alarm. The clock is driven to the processor for reference and deep sleep mode clocking.

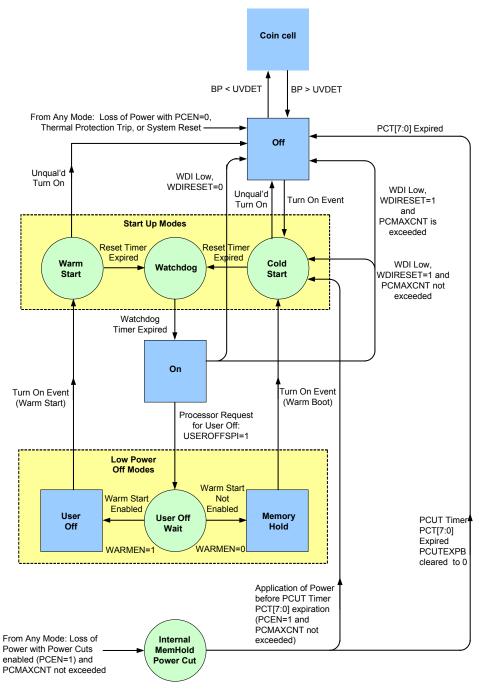


Figure 6. Power Control State Machine Flow Diagram

Figure 6 show the flow diagram of the power control state machine, and each state is described in detailed on the following sections. Note that the SPI control is only possible in the Watchdog, On and User Off Wait states, and that the interrupt line INT is kept low in all states except for Watchdog and On.

34709

7.5.2.1 Coin Cell

The RTC module is powered from the coin cell due to insufficient voltage at BP and the PMIC not being in a Power Cut. In this state, no Turn On event is accepted and transitioning to the Off state would requires BP restoration with a threshold above UVDET. RESETB, and RESETBMCU are held low in this mode.

The RTC module remains active (32 kHz oscillator + RTC timers), along with BP level detection to qualify exit to the Off state. VCOREDIG is off and the VDDLP regulator is on, the rest of the system is put into its lowest power configuration.

If the coin cell is depleted (VSTRC drops below 0.9 V while in the Coin Cell state), a complete system reset will occur. At next Turn On event, the system will power-up reinitialized with all SPI bits, including those that reset on RTCPORB, restored to their default states.

7.5.2.2 Off (with good battery)

If BP is above the UVDET threshold, only the core circuitry at VCOREDIG and the RTC module are powered, all other supplies are inactive. To exit the Off mode, a valid turn on event is required. If BP is below the UVDET threshold, no turn on events are accepted. If a valid coin cell is present, the core gets powered from LICELL. The only active circuitry is the RTC module and the detection VCORE module powering VCOREDIG at 1.5 V.

No specific timer is running in this mode. RESETB and RESETBMCU are held low while in Off mode.

7.5.2.3 Cold Start

Cold Start is entered upon a Turn On event from Off, Warm Boot, successful PCUT, or a Silent System Restart. The first 8.0 ms are used for initialization, which includes bias generation, PUMSx configuration latching, and qualification of the BP supply level. The switching and linear regulators are then powered up sequentially to limit the inrush current; see Start-up Requirements section for sequencing and default level details. The reset signals RESETB and RESETBMCU are kept low. The Reset timer starts running when entering Cold Start. The Cold Start state exits to the Watchdog state and both RESETB and RESETBMCU become high (open-drain output with external pull-ups) when the reset timer is expired. The input control pins WDI, and STANDBY are ignored.

7.5.2.4 Watchdog

The system is fully powered and under SPI control. RESETB and RESETBMCU are high. The Watchdog timer starts running when entering the Watchdog state. When the watchdog timer is expired, the system transitions to the On state, where WDI will be checked and monitored. The input control pins WDI and STANDBY are ignored while in the Watchdog state.

7.5.2.5 On Mode

The system is fully powered and under SPI control. RESETB and RESETBMCU are high. The WDI pin must be high to stay in this mode. The WDI IO supply voltage is referenced to SPIVCC (normally connected to SW5 = 1.8 V); SPIVCC must therefore remain enabled to allow for proper WDI detection. If WDI goes low, the system will transition to the Off state or Cold Start depending on the configuration; refer to the section Silent System Restart with WDI Event for details.

7.5.2.6 User Off Wait

The system is fully powered and under SPI control. The WDI pin no longer has control over the part.

The Wait mode is entered by a processor request for user off by setting the USEROFFSPI bit high. This is normally initiated by the end user via the power key; upon receiving the corresponding interrupt, the system will determine if the product has been configured for User Off or Memory Hold states (both of which first require passing through User Off Wait) or just transition to the Off mode.

The Wait timer starts running when entering User Off Wait mode. This leaves the processor time to suspend or terminate its tasks. When expired, the Wait mode exits to User Off mode or Memory Hold mode depending on warm starts being enabled or not via the WARMEN bit. The USEROFFSPI bit is being reset at this point by RESETB going low.

7.5.2.7 Memory Hold and User Off (Low-power Off states)

As noted in the User Off Wait description, the system is directed into low-power Off states based on a SPI command in response to an intentional turn off by the end user, therefore the only way to exit this mode will be through a turn on event.

To the end user, the Memory Hold and User Off states look like the product has been shut down completely. However, a faster start-up is facilitated by maintaining external memory in self-refresh mode (Memory Hold and User Off mode) as well as powering portions of the processor core for state retention (User Off only). The switching regulator mode control bits allow selective powering of the buck regulators for optimizing the supply behavior in the low-power Off modes. Linear regulators and most functional blocks are disabled except for the RTC module, SPI bits resetting with RTCPORB, and Turn On event detection, which are maintained powered.

As an example, the following descriptions assume the typical use case where SW1 supplies the processor core(s), SW2 is applied to the processor's VCC domain, SW3 supplies the processors internal memory/peripherals, SW4 supplies the external memory, and SW5 supplies the I/O rail. The buck regulators are intended for direct connection to the aforementioned loads.

7.5.2.8 Memory Hold

RESETB and RESETBMCU are low, and both CLK32K and CLK32KMCU are disabled (CLK32KMCU active if DRM is set). To ensure that SW1, SW2, SW3, and SW5 shut off in Memory Hold, appropriate mode settings should be used such as SW1MHMODE, = SW2MHMODE, = SW3MHMODE, = SW5MHMODE set to = 0 (refer to General Control section). Since SW4 should be powered in PFM mode, SW4MHMODE could be set to 1.

Upon a Turn On event, the Cold Start state is entered, the default power-up values are loaded, and the MEMHLDI interrupt bit is set. A Cold Start out of the Memory Hold state will result in shorter boot times compared to starting out of the Off state, since software does not have to be loaded and expanded from flash. The start-up out of Memory Hold is also referred to as Warm Boot. No specific timer is running in this mode.

Buck regulators that are configured to stay on in MEMHOLD mode by their SWxMHMODE settings will not be turned off when coming out of MEMHOLD and entering a Warm Boot. The switching regulators will be reconfigured to their default settings in their corresponding time slot defined by the PUMSx pins.

7.5.2.9 User Off

RESETB is low and RESETBMCU is kept high. The 32 kHz peripheral clock driver CLK32K is disabled; CLK32KMCU (connected to the processor's CKIL input) is maintained in this mode if the CLK32KMCUEN and USEROFFCLK bits are both set, or if DRM is set.

The memory domain is held up by setting SW4UOMODE = 1. Similarly, the SW1 and/or SW2 and/or SW3 supply domains can be configured for SWxUOMODE=1 to keep them powered through the User Off event. If one of the switching regulators can be shut down on in User Off, its mode bits would typically be set to 0.

Since power is maintained for the core (which is put into its lowest power state), and since RESETBMCU does not trip, the processor's state may be quickly recovered when exiting USEROFF upon a turn on event. The CLK32KMCU clock can be used for very low frequency / low-power idling of the core(s), minimizing battery drain, while allowing a rapid recovery from where the system left off before the USEROFF command.

Upon a turn on event, Warm Start state is entered, and the default power-up values are loaded. A Warm Start out of User Off will result in an almost instantaneous start-up of the system, since the internal states of the processor were preserved along with external memory. No specific timer is running in this mode.

7.5.2.10 Warm Start

Entered upon a Turn On event from User Off. The first 8.0 ms is used for initialization, which includes bias generation, PUMSx latching, and qualification of the BP supply level. The switching and linear regulators are then powered up sequentially to limit the inrush current; see <u>Start-up</u> Requirements for sequencing and default level details. If SW1, SW2, SW3, SW4, and/or SW5, were configured to stay on in User Off mode by their SWxUOMODE settings, they will not be turned off when coming out of User Off and entering a Warm Start. The buck regulators will be reconfigured for their default settings as selected by the PUMSx pins in the respective time slot defined in the sequencer selection.

RESETB is kept low and RESETBMCU is kept high. CLK32KMCU is kept active if CLK32KMCU was set. The reset timer starts running when entering Warm Start. When expired, the Warm Start state exits to the Watchdog state, a WARMI interrupt is generated, and RESETB will go high.

7.5.2.11 Internal MemHold Power Cut

As described in the Power Cut Description, a momentary power interruption will put the system into the Internal MemHold Power Cut state if PCUTs are enabled. The backup coin cell will now supply the 34709 core along with the 32 kHz crystal oscillator, the RTC system, and coin cell backed up registers. All regulators will be shut down to preserve the coin cell and RTC as long as possible.

Both RESETB and RESETBMCU are tripped, bringing the entire system down along with the supplies and external clock drivers, so the only recovery out of a Power Cut state is to reestablish power and initiate a Cold Start.

If the PCT timer expires before power is re-established, the system transitions to the Off state and awaits a sufficient supply recovery.

7.5.3 Power Control Logic

7.5.3.1 Power Cut Description

When the BP drops below the UVDET threshold, due to battery bounce or battery removal, the Internal MemHold Power Cut mode is entered and a Power Cut (PCUT) timer starts running. The backup coin cell will now supply the RTC as well as the on chip memory registers and some other power control related bits. All other supplies will be disabled.

The maximum duration of a power cut is determined by the PCUT timer PCT [7:0] preset via the SPI. When a PCUT occurs, the PCUT timer will be started. The contents of PCT [7:0] does not reflect the actual count down value, but will keep the programmed value, and therefore does not have to be reprogrammed after each power cut.

If power is not re-established above the 3.0 V threshold before the PCUT timer expires, the state machine transitions to the Off mode at expiration of the counter and it clears the PCUTEXB bit by setting it to 0. This transition is referred to as an "unsuccessful" PCUT. In addition, the PMIC will bring the SDWNB pin low for one 32 kHz clock cycle before powering down.

Upon re-application of power before expiration (a "successful PCUT", defined as BP first rising above the UVDET threshold and then battery above the 3.0 V threshold before the PCUT timer expires), a Cold Start is engaged after the UVTIMER has expired.

In order to distinguish a non-PCUT initiated Cold Start from a Cold Start after a PCUT, the PCI interrupt should be checked by software. The PCI interrupt is cleared by software or when cycling through the Off state.

Because the PCUT system quickly disables the entire power tree, the battery voltage may recover to a level with the appearance of a valid supply once the battery is unloaded. However, upon a restart of the PMIC and power sequencer, the surge of current through the battery and trace impedances can once again cause the BP node to droop below UVDET. This chain of cyclic power down / power-up sequences is referred to as "ambulance mode", and the power control system includes strategies to minimize the chance of a product falling into and getting stuck in ambulance mode.

First, the successful recovery out of a PCUT requires the BP node to rise above LOBATT threshold, providing hysteretic margin from the LOBATT (H to L) threshold. Secondly, the number of times the PCUT mode is entered is counted with the counter PCCOUNT [3:0], and the allowed count is limited to PCMAXCNT [3:0] set through the SPI. When the contents of both become equal, then the next PCUT will not be supported and the system will go to Off mode, after the PCUT time expires.

After a successful power-up from a PCUT (i.e., valid power is re-established, the system comes out of reset and the processor re-assumes control), software should clear the PCCOUNT [3:0] counter. Counting of PCUT events is enabled via the PCCOUNTEN bit. This mode is only supported if the power cut mode feature is enabled by setting the PCEN bit. When not enabled, then in case of a power failure, the state machine will transition to the Off mode. SPI control is not possible during a PCUT event and the interrupt line is kept low. SPI configuration for PCUT support should also include setting the PCUTEXPB = 1 (See Silent Restart from PCUT Event).

7.5.3.2 Silent Restart from PCUT Event

If a short duration power cut event occurs (such as from a battery bounce, for example), it may be desirable to perform a silent restart, so the system is reinitialized without alerting the user. This can be facilitated by setting the PCUTEXPB bit to "1" at booting or after a Cold Start. This bit resets on RTCPORB, therefore any subsequent Cold Start can first check the status of PCUTEXPB and the PCI bit. The PCUTEXPB is cleared to "0" when transitioning from PCUT to Off. If there was a PCUT interrupt and PCUTEXPB is still "1", then the state machine has not transitioned through Off, which confirms that the PCT timer has not expired during the PCUT event (successful power cut). In this case, a silent restart may be appropriate.

If PCUTEXPB is found to be "0" after the Cold Start where PCI is found to be "1", then it is inferred that the PCT timer has expired before power was re-established, flagging an unsuccessful power cut or first power-up, so the start-up user greeting may be desirable for playback.

7.5.3.3 Silent System Restart with WDI Event

A mechanism is provided for recovery if the system software somehow gets into an abnormal state which requires a system reset, but it is desired to make the reset a silent event so as to happen without end user awareness. The default response to WDI going low is for the state machine to transition to the Off mode (when WDIRESET = 0). However, if WDIRESET = 1, the state machine will go to Cold Start without passing through Off mode (i.e., does not generate an OFFB signal).

A WDIRESET event will generate a maskable WDIRESETI interrupt and also increment the PCCOUNT counter. This function is unrelated to PCUTs, but it shares the PCUT counter so that the number of silent system restarts can be limited by the programmable PCMAXCNT counter.

When PCUT support is used, the software should set the PCUTEXPB bit to "1". Since this bit resets with RTCPORB, it will not be reset to "0" if a WDI falls and the state machine goes straight to the Cold Start state. Therefore, upon a restart, software can discern a silent system restart if there is a WDIRESETI interrupt and PCUTEXPB = 1. The application may then determine that an inconspicuous restart without fanfare may be more appropriate than launching into the welcoming routine.

A PCUT event does not trip the WDIRESETI bit.

Note that the system response to WDI is gated by the Watchdog timer—once the timer has expired, then the system will respond as programmed by WDIRESET and described above.

Applications should make sure there is time for switching regulator outputs to discharge before re-asserting WDI.

7.5.3.4 Turn On Events

When in Off mode, the circuit can be powered on via a Turn On event. To indicate to the processor what event caused the system to power on, an interrupt bit is associated with each of the Turn On events. Masking the interrupts related to the turn on events will not prevent the part to turn on, except for the time of day alarm. If the part was already on at the time of the turn on event, the interrupt is still generated. The possible Turn On events are:

 Power Button Press: PWRON1, or PWRON2 pulled low with corresponding interrupts and sense bits PWRON11 or PWRON2I, and PWRON1S or PWRON2S. A power on/off button is connected from PWRONx to ground. The PWRONx can be hardware debounced through a programmable debouncer PWRONxDBNC [1:0] to avoid a response upon a very short unintentional key press. BP should be above UVDET to allow a power-up. The PWRONxI interrupt is generated for both the falling and the rising edge of the PWRONx pin. By default, a 30 ms interrupt debounce is applied to both falling and rising edges. The falling edge debounce timing can be extended with PWRONxDBNC[1:0] as defined in the following table. The PWRONxI interrupt is cleared by software or when cycling through the Off mode.

Bits	State	Turn On Debounce (ms)	Falling Edge INT Debounce (ms)	Rising Edge INT Debounce (ms)
	00	0.0	31.25	31.25
PWRONxDBNC[1:0]	01	31.25	31.25	31.25
	10	125	125	31.25
	11	750	750	31.25

Table 22. PWRONx Hardware Debounce Bit Settings⁽³⁸⁾

Notes

38. The sense bit PWRONxS is not debounced and follows the state of the PWRONx pin.

- **Battery Attach:** This occurs when BP crosses the 3.0V threshold and the UVDET rising threshold which is equivalent to attaching a charged battery or supply to the product.
- **RTC Alarm:** TOD and DAY become equal to the alarm setting programmed. This allows powering up a product at a preset time. BP should be above 3.0V, and BP should have crossed the UVDET rising threshold and not transitioned below the UVDET falling threshold.
- System Restart: A system restart may occur after a system reset as described earlier in this section. This is an optional function, see Turn Off Events. BP should be above 3.0 V and BP should have crossed the UVDET rising threshold and not transitioned below the UVDET falling threshold.
- Global System Reset: The global reset feature powers down the part, resets the SPI registers to their default value including all the RTCPORB registers (except the DRM bit, and the RTC registers), and then powers back on. To enable a global reset, the GLBRST pin needs to be pulled low for greater than GLBRSTTMR [1:0] seconds and then pulled back high (defaults to 12 s). BP should be above 3.0 V.

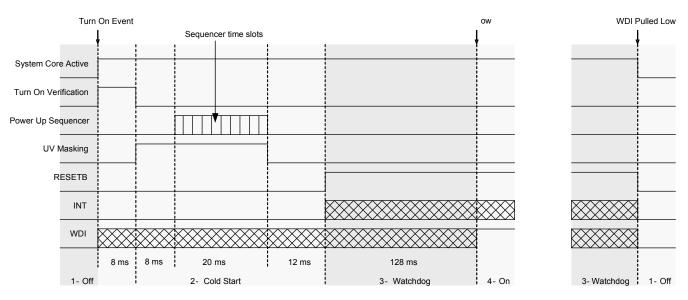
Bits	State	Time (s)
GLBRSTTMR[1:0]	00	Invalid
	01	4.0
	10	8.0
	11 (default)	12

Table 23. Global Reset Time Settings

7.5.3.5 Turn Off Events

- Power Button Press (via WDI): User shut down of a product is typically done by pressing the power button connected to the PWRONx pin. This will generate an interrupt (PWRONxI), but will not directly power off the part. The product is powered off by the processor's response to this interrupt, which will be to pull WDI low. Pressing the power button is therefore under normal circumstances not considered as a turn off event for the state machine. However, since the button press power down is the most common turn off method for end products, it is described in this section as the product implementation for a WDI initiated Turn Off event. Note that the software can configure an user initiated power down, via a power button press for transition to a Low-power Off mode (Memory Hold or User Off) for a quicker restart than the default transition into the Off state.
- Power Button System Reset: A secondary application of the PWRONx pins is the option to generate a system reset. This is
 recognized as a Turn Off event. By default, the system reset function is disabled but can be enabled by setting the
 PWRONxRSTEN bits. When enabled, a four second long press on the power button will cause the device to go to the Off
 mode, and as a result, the entire application will power down. An interrupt SYSRSTI is generated upon the next power-up.
 Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.
- **Thermal Protection:** If the die gets overheated, the thermal protection will power off the part to avoid damage. A Turn On event will not be accepted while the thermal protection is still being tripped. The part will remain in Off mode until cooling sufficiently to accept a Turn On event. There are no specific interrupts related to this other than the warning interrupts.
- Under-voltage Detection: When the voltage at BP drops below the under-voltage detection threshold UVDET, the state machine will transition to Off mode if PCUT is not enabled or if the PCT timer expires when PCUT is enabled. The SDWNB pin is used to notify to the processor that the PMIC is going to immediately shut down. The PMIC will bring the SDWNB pin low for one 32 kHz clock cycle before powering down. This signal will then be brought back high in the power Off state.

7.5.3.6 Timers


The different timers as used by the state machine are listed on <u>Table 24</u>; this listing does not include RTC timers for timekeeping. A synchronization error of up to one clock period may occur with respect to the occurrence of an asynchronous event, the duration listed on <u>Table 24</u> is therefore the effective minimum time period.

Timer	Duration	Clock
Under-voltage Timer	4.0 ms	32 k/32
Reset Timer	40 ms	32 k/32
Watchdog Timer	128 ms	32 k/32
Power Cut Timer	Programmable 0 to 8 seconds in 31.25 ms steps	32 k/1024

Table 24. Timer Main Characteristics

7.5.3.6.1 Timing Diagrams

A Turn On event timing diagrams shown in Figure 7.

Power up of the system upon a Turn On Event followed by a transition to the On state if WDI is pulled high Turn on Event is based on PWRON being pulled low

... or transition to Off state if WDI remains low

= Indeterminate State

Figure 7. Power-up Timing Diagram

7.5.3.7 Power Monitoring

The voltage at BP is monitored by detectors as summarized in Table 25.

Threshold	Voltage (V)	
Power on	3.0	
Low input supply warning		
• BP (H to L) ⁽³⁹⁾	2.9	
JVDET rising ⁽⁴⁰⁾	3.0	
JVDET Falling ⁽⁴⁰⁾	2.65	

Table 25. LOWBATT Detection Thresholds

Notes

39. 50 mV hysteresis is applied.

40. ± 4.0 % tolerance

The UVDET and Power on thresholds are related to the power on/off events as described earlier in this chapter. In order for the IC to power on, BP must rise above the UVDET rising threshold, and the power on threshold (3.0 V). When the BP node decreases below the 2.9 V threshold, a low input supply warning will be sent to the processor via the LOWBATTI interrupt.

The LOWBATTI detection threshold is debounced by the VBATTDB[2:0] SPI bits shown in Table 26.

Table 26. VBATTDB Debounce Times

VBATTDB[1:0]	Debounce Time (ms)
00	0.1
01	1.0
10	2.5
11 (default)	3.9

7.5.3.8 Power Saving

7.5.3.8.1 System Standby

A product may be designed to enter in Deep Sleep Modes (DSM) after periods of inactivity, the STANDBY pin is provided for board level control of timing in and out of such deep sleep modes.

When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the operating mode of the switching regulators, or disabling some regulators. This can be obtained by controlling the STANDBY pin. The configuration of the regulators in standby is pre-programmed through the SPI.

With the ON_STBY_LP SPI bit set and the STANDBY pin asserted, a lower power standby will be entered. In the Standby Lowpower mode, the switching regulators should be programmed into PFM mode, and the LDO's should be configured to operate in the Low-power mode when the STANDBY pin is asserted. The PLL is disabled in this mode

Note that the STANDBY pin is programmable for active high or active low polarity, and the decoding of a Standby event will take into account the programmed input polarity associated with each pin. For simplicity, Standby will generally be referred to as active high throughout this document, but as defined in <u>Table 27</u>, active low operation can be programmed. Finally, since the STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond to the pin level changes.

STANDBY (Pin)	STANDBYINV (SPI bit)	STANDBY Control ⁽⁴¹⁾
0	0	0
0	1	1
1	0	1
1	1	0

 Table 27. Standby Pin and Polarity Control

Notes

41. STANDBY = 0: System is not in Standby STANDBY = 1: System is in Standby

The state of the STANDBY pin only has influence in On mode, therefore it is ignored during start-up and in the Watchdog phase. This allows the system to power-up without concern of the required Standby polarities since software can make adjustments accordingly as soon as it is running.

A command to transition to one of the low-power Off states (User Off or Memory Hold, initiated with USEROFFSPI=1) redefines the power tree configuration based on SWxMODE programming, and has priority over Standby, which also influences the power tree configuration.

7.5.3.8.2 Standby Delay

A provision to delay the Standby response is included. This allows the processor and peripherals, some time after a Standby instruction has been received, to terminate processes to facilitate seamless Standby exiting and re-entrance into Normal operating mode.

A programmable delay is provided to hold off the system response to a Standby event. When enabled (STBYDLY[1:0] = 01, 10, or 11), it will delay the STANDBY initiated response for the entire PMIC until the STBYDLY counter expires.

The STBYDLY delay is applied only when going into Standby, and no delay is applied when coming out of Standby. Also, an allowance should be accounted for synchronization of the asynchronous Standby event and the internal clocking edges (up to a full 32 k cycle of additional delay).

STBYDLY[1:0]	Function
00	No Delay
01	One 32 k period (default)
10	Two 32 k periods
11	Three 32 k periods

7.5.4 Buck Switching Regulators

Six buck switching regulators are provided with integrated power switches and synchronous rectification. In a typical application, SW1 and SW2 are used for supplying the application processor core power domains. Split power domains allow independent DVS control for processor power optimization, or to support technologies with a mix of device types with different voltage ratings. SW3 is used for powering internal processor memory as well as low-voltage peripheral devices and interfaces which can run at the same voltage level. SW4A/B is used for powering external DDR memory as well as low-voltage peripheral devices and interfaces and interfaces, which can run at the same voltage level. SW5 is used to supply the I/O domain for the system.

The buck regulators are supplied from the system supply BP, which is drawn from the main battery

The switching regulators can operate in different modes depending on the load conditions. These modes can be set through the SPI and include a PFM mode, an Automatic Pulse Skipping mode (APS), and a PWM mode.

Mode	Description
OFF	The regulator is switched off and the output voltage is discharged
PFM	Pulse Frequency Modulation: The regulator is switched on and set to PFM mode operation. In this mode, the regulator is always running in PFM mode. Useful at light loads for optimized efficiency.
APS	Automatic Pulse Skip: The regulator is switched on and set to Automatic Pulse Skipping. In this mode the regulator moves automatically between pulse skipping and full PWM mode depending on load conditions.
PWM	Pulse Width Modulation: The regulator is switched on and set to PWM mode. In this mode the regulator is always in full PWM mode operation regardless of load conditions.

Table 29. Buck Operating Modes

Buck modes of operation are programmable for explicitly defined or load-dependent control.

During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes. By default the regulators are turned on in APS mode. After the start-up sequence is complete, all switching regulators should be set to PFM/PWM mode depending on system load for best performance.

Point of Load feedback is intended for minimizing errors due to board level IR drops.

7.5.4.1 General Control

Operational modes of the Buck regulators can be controlled by direct SPI programming, altered by the state of the STANDBY pin, by direct state machine influence such as entering Off or low-power Off modes, or by load current magnitude when so configured (APS). Available modes include PWM, PFM, APS, and OFF. For light loads, the regulators should be put into PFM mode to optimize efficiency.

SW1A/B, SW2, SW3, SW4A/B, and SW5, can be configured for mode switching with STANDBY or autonomously, based on load current Auto pulse skip mode. Additionally, provisions are made for maintaining PFM operation in User off and Memhold modes, to support state retention for faster start-up from the Low-power Off modes for Warm Start or Warm Boot. SWxMODE[3:0] bits will be reset to their default values defined by PUMSx settings by the start-up sequencer.

Table 30 summarizes the Buck regulators programmability for Normal and Standby modes.

SWxMODE[3:0]	Normal Mode	Standby Mode
0000	Off	Off
0001	PWM	Off
0010	Reserved	Reserved
0011	PFM	Off
0100	APS	Off
0101	PWM	PWM
0110	PWM	APS
0111	Off	Off
1000	APS	APS
1001	Reserved	Reserved
1010	Reserved	Reserved
1011	Reserved	Reserved
1100	APS	PFM

Table 30. Switching regulator Mode Control for Normal and Standby Operation

SWxMODE[3:0]	Normal Mode	Standby Mode
1101	PWM	PFM
1110	Reserved	Reserved
1111	PFM	PFM

Table 30. Switching regulator Mode Control for Normal and Standby Operation	Table 30.	. Switching regulate	or Mode Control for	Normal and Standb	v Operation
---	-----------	----------------------	---------------------	-------------------	-------------

In addition to controlling the operating mode in Standby, the voltage setting can be changed. The voltage transition slope is controlled by DVS, see Dynamic Voltage Scaling section for details. Each regulator has an associated set of SPI bits for Standby mode set points. By default, the Standby settings are identical to the non-standby settings which are initially defined by PUMSx programming.

The actual operating mode of the Switching regulators as a function of the STANDBY pin is not reflected through the SPI. In other words, the SPI will read what is programmed in SWxMODE[3:0], not the actual state that may be altered as described previously.

<u>Table 31</u> and <u>Table 32</u> provide the mode control in the low-power Off states. Note that a low-power Off activated SWx should use the Standby set point as programmed by SWxSTBY[4:0]. The activated regulator(s) will maintain settings for mode and voltage until the next start-up event. When the respective time slot of the start-up sequencer is reached for a given regulator, its mode and voltage settings will be updated the same as if starting in the Off state. The exception is switching regulators that are active through a low-power Off mode will remain on when the start-up sequencer is started.

Table 31. S	Switching regulator Co	ontrol In Memory Hold
-------------	------------------------	-----------------------

SWxMHMODE	Memory Hold Operational Mode (42)
0	Off
1	PFM

Notes:

42. For Memory Hold mode, an activated SWx should use the Standby set point as programmed by SWxSTBY[4:0].

SWxUOMODE	User Off Operational Mode ⁽⁴³⁾
0	Off
1	PFM

Notes:

 For User Off mode, an activated SWx should use the Standby set point as programmed by SWxSTBY[4:0].

In normal steady state operating mode, the SWxPWGD pin is pulled high. During DVS the SWxPWGD is asserted low.

7.5.4.2 Switching Frequency

A PLL generates the switching system clocking from the 32.768 kHz crystal oscillator reference. The switching frequency can be programmed to 2.0 MHz or 4.0 MHz by setting the PLLX SPI bit as shown in <u>Table 33</u>.

Table 33.	Buck	Regulator	Frequency
-----------	------	-----------	-----------

PLLX	Switching Frequency (Hz)
0	2 000 000
1	4 000 000

The clocking system provides a near instantaneous activation when the switching regulators are enabled or when exiting PFM operation to PWM mode. The PLL can be configured for continuous operation with PLLEN = 1.

7.5.4.3 SW1

SW1 is a fully integrated synchronous buck PWM voltage mode controlled DC/DC regulator. It can be operated in single phase/ dual phase mode. The operating mode of the switching regulator is configured by the SW1CFG pin. The SW1CFG pin is sampled at start-up.

Table 34. SW1 Configuration

SW1CFG	SW1A/B Configuration Mode
VCOREDIG	Single Phase Mode
Ground	Dual Phase Mode

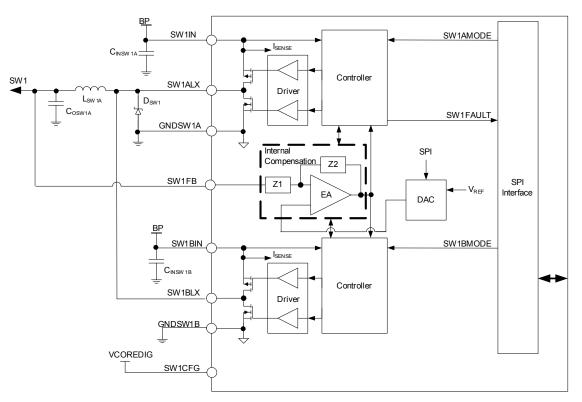


Figure 8. SW1 Single Phase Output Mode Block Diagram

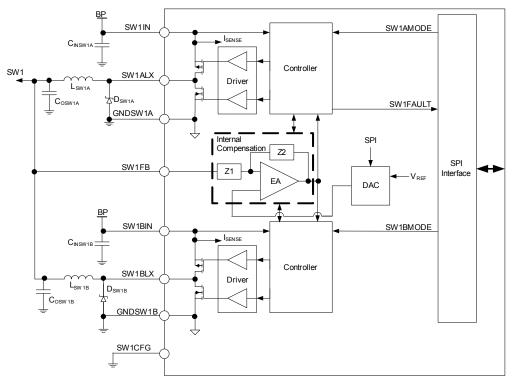


Figure 9. SW1 Dual Phase Output Mode Block Diagram

The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator will limit the current through cycle by cycle operation and alert the system through the SW1FAULT SPI bit and issue an SCPI interrupt via the INT pin.

SW1A/B output voltage is SPI configurable in step sizes of 12.5 mV as shown in the table below. The SPI bits SW1A[5:0] set the output voltage for both the SW1A and SW1B.

Set Point	SW1A[5:0]	SW1A/B Output (V)	Set Point	SW1A[5:0]	SW1A/B Output (V)
0	000000	0.6500	32	100000	1.0500
1	000001	0.6625	33	100001	1.0625
2	000010	0.6750	34	100010	1.0750
3	000011	0.6875	35	100011	1.0875
4	000100	0.7000	36	100100	1.1000
5	000101	0.7125	37	100101	1.1125
6	000110	0.7250	38	100110	1.1250
7	000111	0.7375	39	100111	1.1375
8	001000	0.7500	40	101000	1.1500
9	001001	0.7625	41	101001	1.1625
10	001010	0.7750	42	101010	1.1750
11	001011	0.7875	43	101011	1.1875
12	001100	0.8000	44	101100	1.2000

Table 35. SW1A/B Output Voltage Programmability

Set Point	SW1A[5:0]	SW1A/B Output (V)	Set Point	SW1A[5:0]	SW1A/B Output (V)
13	001101	0.8125	45	101101	1.2125
14	001110	0.8250	46	101110	1.2250
15	001111	0.8375	47	101111	1.2375
16	010000	0.8500	48	110000	1.2500
17	010001	0.8625	49	110001	1.2625
18	010010	0.8750	50	110010	1.2750
19	010011	0.8875	51	110011	1.2875
20	010100	0.9000	52	110100	1.3000
21	010101	0.9125	53	110101	1.3125
22	010110	0.9250	54	110110	1.3250
23	010111	0.9375	55	110111	1.3375
24	011000	0.9500	56	111000	1.3500
25	011001	0.9625	57	111001	1.3625
26	011010	0.9750	58	111010	1.3750
27	011011	0.9875	59	111011	1.3875
28	011100	1.0000	60	111100	1.4000
29	011101	1.0125	61	111101	1.4125
30	011110	1.0250	62	111110	1.4250
31	011111	1.0375	63	111111	1.4375

Table 35. SW1A/B Output Voltage Programmability

Table 36. SW1A/B Electrical Specification

Characteristics noted under conditions BP = V_{SW1xIN} = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = V_{SW1xIN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
SW1A/B BU	CK REGULATOR	I			1	1
	Operating Input Voltage					
V _{SW1IN}	 PWM operation, 0 mA < IL < I_{MAX} 	3.0	-	4.5	V	
	 PFM operation, 0 mA < IL < IL_{MAX} 	2.8	-	4.5		
V _{SW1ACC}	Output Voltage Accuracy PWM mode including ripple, load regulation, and transients PFM Mode, including ripple, load regulation, and transients 	Nom-25 Nom-25	Nom Nom	Nom+25 Nom+25	mV	(44)
I _{SW1}	Continuous Output Load Current, V _{INMIN} < BP < 4.5 V • PWM mode single/dual phase (parallel) • SW1 in PFM mode	-	- 50	2000	mA	
I _{SW1PEAK}	Current Limiter Peak Current Detection • V _{SW1xIN} = 3.6 V, Current through Inductor	-	4.0	-	A	
V _{SW1OS-} START	Start-up Overshoot • IL = 0 mA	-		25	mV	

Table 36. SW1A/B Electrical Specification

Characteristics noted under conditions BP = V_{SW1xIN} = 3.6 V, -40 °C $\leq T_A \leq$ 85 °C, unless otherwise noted. Typical values at BP = V_{SW1xIN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes		
SW1A/B BUCK REGULATOR (CONTINUED)								
t _{ON-SW1}	Turn-on TimeEnable to 90% of end value IL = 0 mA	-	-	500	μs			
f _{SW1}	Switching Frequency • PLLX = 0 • PLLX = 1	-	2.0 4.0	-	MHz			
I _{SW1Q}	Quiescent Current Consumption APS Mode, IL=0 mA; device not switching PFM Mode, IL=0 mA 	-	160 15	-	μA			
໗sw1	Efficiency, • PFM, 0.9 V, 1.0 mA • PWM, 1.1 V, 200 mA • PWM, 1.1 V, 800 mA • PWM, 1.1 V, 1600 mA	- - -	54 75 81 76	- - -	%	(45)		

Notes:

44. Transient loading for load steps of ILMAX/2 at 100 mA/ μ s.

45. Efficiency numbers at V_{SW1xIN} = 3.6 V, excludes the quiescent current

7.5.4.4 SW2

SW2 is a fully integrated synchronous buck PWM voltage mode controlled DC/DC regulator.

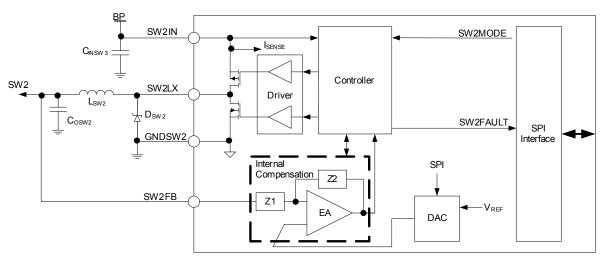


Figure 10. SW2 Block Diagram

The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected, the regulator will limit the current through cycle by cycle operation, alert the system through the SW2FAULT SPI bit, and issue an SCPI interrupt via the INT pin.

SW2 can be programmed in step sizes of 12.5 mV as shown in Table 37.

Set Point	SW2[5:0]	SW2x Output (V)	Set Point	SW2[5:0]	SW2 Output (V)
0	000000	0.6500	32	100000	1.0500
1	000001	0.6625	33	100001	1.0625
2	000010	0.6750	34	100010	1.0750
3	000011	0.6875	35	100011	1.0875
4	000100	0.7000	36	100100	1.1000
5	000101	0.7125	37	100101	1.1125
6	000110	0.7250	38	100110	1.1250
7	000111	0.7375	39	100111	1.1375
8	001000	0.7500	40	101000	1.1500
9	001001	0.7625	41	101001	1.1625
10	001010	0.7750	42	101010	1.1750
11	001011	0.7875	43	101011	1.1875
12	001100	0.8000	44	101100	1.2000
13	001101	0.8125	45	101101	1.2125
14	001110	0.8250	46	101110	1.2250
15	001111	0.8375	47	101111	1.2375
16	010000	0.8500	48	110000	1.2500

Table 37. SW2 Output Voltage Programmability

rabio ori. oriz output voltago r rogrammability									
Set Point	SW2[5:0]	SW2x Output (V)	Set Point	SW2[5:0]	SW2 Output (V)				
17	010001	0.8625	49	110001	1.2625				
18	010010	0.8750	50	110010	1.2750				
19	010011	0.8875	51	110011	1.2875				
20	010100	0.9000	52	110100	1.3000				
21	010101	0.9125	53	110101	1.3125				
22	010110	0.9250	54	110110	1.3250				
23	010111	0.9375	55	110111	1.3375				
24	011000	0.9500	56	111000	1.3500				
25	011001	0.9625	57	111001	1.3625				
26	011010	0.9750	58	111010	1.3750				
27	011011	0.9875	59	111011	1.3875				
28	011100	1.0000	60	111100	1.4000				
29	011101	1.0125	61	111101	1.4125				
30	011110	1.0250	62	111110	1.4250				
31	011111	1.0375	63	111111	1.4375				

Table 37. SW2 Output Voltage Programmability

Table 38. SW2 Electrical Specifications

Characteristics noted under conditions BP = V_{SW2IN} = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = V_{SW2IN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
SW2 BUCK	REGULATOR			•		
	Operating Input Voltage					
V _{SW2IN}	 PWM operation, 0 mA < IL < I_{MAX} 	3.0	-	4.5	V	
	 PFM operation, 0 mA < IL < IL_{MAX} 	2.8	-	4.5		
	Output Voltage Accuracy					
V _{SW2ACC}	PWM mode including ripple, load regulation, and transients	Nom-25	Nom	Nom+25	mV	(46)
	PFM Mode, including ripple, load regulation, and transients	Nom-25	Nom	Nom+25		
	Continuous Output Load Current, V _{INMIN} < BP < 4.5 V					
I _{SW2}	PWM mode	-	-	1000	mA	
	PFM mode	-	50	-		
	Current Limiter Peak Current Detection					
I _{SW2PEAK}	 V_{SW2IN} = 3.6 V Current through Inductor 	-	2.0	-	A	
V _{SW2OS-}	Start-up Overshoot			05		
START	• IL = 0 mA	-	-	25	mv	
	Turn-on Time					
t _{ON-SW2}	 Enable to 90% of end value IL = 0 mA 	-	-	500	μs	
	Switching Frequency			-		
f _{SW2}	• PLLX = 0	-	2.0	-	MHz	
	• PLLX = 1	-	4.0	-		

Table 38. SW2 Electrical Specifications

Characteristics noted under conditions BP = V_{SW2IN} = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = V_{SW2IN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes
SW2 BUCK	REGULATOR (CONTINUED)	·				
	Quiescent Current Consumption					
I _{SW2Q}	 APS Mode, IL=0 mA; device not switching 	-	160	-	μA	
	 PFM Mode, IL = 0 mA; device not switching 	-	15	-		
	Efficiency					
	• PFM, 0.9 V, 1.0 mA	-	54	-		
η _{SW2}	• PWM, 1.2 V, 120 mA	-	75	-	%	(47)
	• PWM, 1.2 V, 500 mA	-	83	-		
	• PWM, 1.2 V, 1000 mA	-	78	-		

Notes:

46. Transient loading for load steps of ILMAX/2 at 100 mA/ μ s.

47. Efficiency numbers at V_{SW2IN} = 3.6 V, excludes the quiescent current.

7.5.4.5 SW3

SW3 is a fully integrated synchronous buck PWM voltage mode controlled DC/DC regulator.

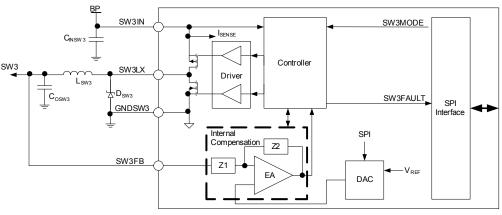


Figure 11. SW3 Block Diagram

The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator will limit the current through cycle by cycle operation and alert the system through the SW3FAULT SPI bit and issue an SCPI interrupt via the INT pin.

SW3 can be programmed in step sizes of 25 mV as shown in Table 39.

Set Point	SW3[4:0]	SW3 Output (V)	Set Point	SW3[4:0]	SW3 Output (V)
0	00000	0.650	16	10000	1.050
1	00001	0.675	17	10001	1.075
2	00010	0.700	18	10010	1.100
3	00011	0.725	19	10011	1.125
4	00100	0.750	20	10100	1.150
5	00101	0.775	21	10101	1.175
6	00110	0.800	22	10110	1.200
7	00111	0.825	23	10111	1.225
8	01000	0.850	24	11000	1.250
9	01001	0.875	25	11001	1.275
10	01010	0.900	26	11010	1.300
11	01011	0.925	27	11011	1.325
12	01100	0.950	28	11100	1.350
13	01101	0.975	29	11101	1.375
14	01110	1.000	30	11110	1.400
15	01111	1.025	31	11111	1.425

Table 39. SW3 Output Voltage Programmability

Table 40. SW3 Electrical Specification

Characteristics noted under conditions BP = V_{SW3IN} = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = V_{SW3IN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
SW3 BUCK	REGULATOR					
	Operating Input Voltage					
V _{SW3IN}	 PWM operation, 0 mA < IL < I_{MAX} 	3.0	-	4.5	V	
	 PFM operation, 0 mA < IL < IL_{MAX} 	2.8	-	4.5		
	Output Voltage Accuracy					
V _{SW3ACC}	PWM mode including ripple, load regulation, and transients	Nom-3%	Nom	Nom+3%	mV	(48)
	PFM Mode, including ripple, load regulation, and transients	Nom-3%	Nom	Nom+3%	v mV mA A mV	
	Continuous Output Load Current, V _{INMIN} < BP < 4.5 V					
I _{SW3}	PWM mode	-	-	500	5	
	PFM mode	-	50	-		
	Current Limiter Peak Current Detection				_	
I _{SW3PEAK}	 V_{SW3IN} = 3.6 V Current through Inductor 	-	1.0	-	A	
V _{SW3OS-}	Start-up Overshoot			05		
START	• IL = 0 mA	-	-	25	mv	
t	Turn-on Time				116	
t _{ON-SW3}	 Enable to 90% of end value IL = 0 mA 	-	-	500	mV mA A mV	

Table 40. SW3 Electrical Specification

Characteristics noted under conditions BP = V_{SW3IN} = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = V_{SW3IN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
SW3 BUCK	REGULATOR (CONTINUED)					
	Switching Frequency					
f _{SW3}	• PLLX = 0	-	2.0	-	MHz	
	• PLLX = 1	-	4.0	-		
	Quiescent Current Consumption					
I _{SW3Q}	 APS Mode, IL=0 mA; device not switching 	-	160	-	μA	
	 PFM Mode, IL = 0 mA; device not switching 	-	15	-		
	Efficiency					
	• PFM, 1.2 V, 1.0 mA	-	71	-		
η _{SW3}	• PWM, 1.2 V, 120 mA	-	79	-	%	(49)
	• PWM, 1.2 V, 250 mA	-	82	-		
	• PWM, 1.2 V, 500 mA	-	81	-		

Notes:

48. Transient loading for load steps of ILMAX/2 at 100 mA/ μ s.

49. Efficiency numbers at V_{SW3IN} =3.6 V, Excludes the quiescent current,

7.5.4.6 SW4

SW4A/B is a fully integrated synchronous buck PWM voltage mode controlled DC/DC regulator. It can be operated in single/dual phase mode or as independent outputs. The operating mode of the switching regulator is configured by the SW4CFG pin. The SW4CFG pin is sampled at start-up.

Table 41. SW4A/B Configuration

SW4CFG	SW4A/B Configuration Mode
Ground	Independent output
VCOREDIG	Single phase
VCORE	Dual phase

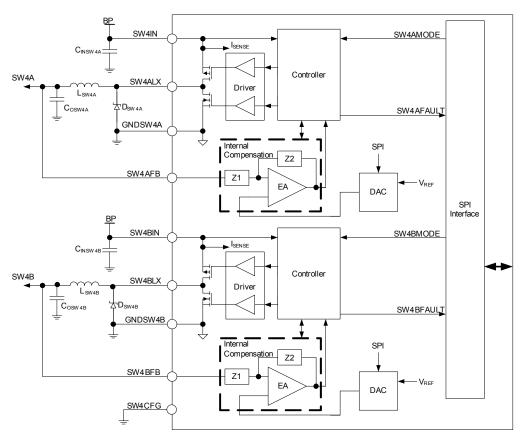


Figure 12. SW4A/B Independent Output Mode Block Diagram

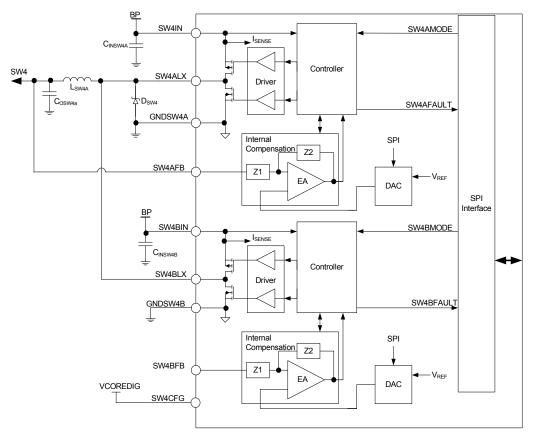


Figure 13. SW4 Single Phase Output Mode Block Diagram

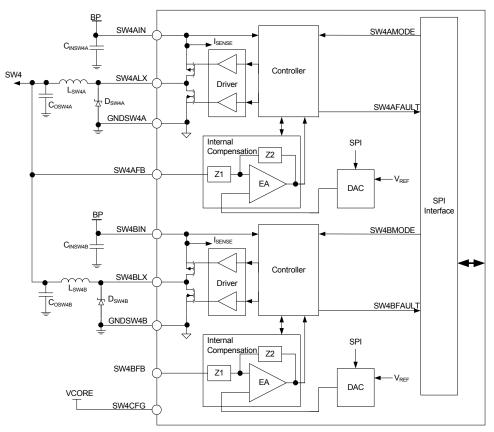


Figure 14. SW4 Dual Phase Output Mode Block Diagram

The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected, the regulator will limit the current through cycle by cycle operation, alert the system through the SW4xFAULT SPI bit, and issue an SCPI interrupt via the INT pin.

SW4A/B has a high output range (2.5 V or 3.15 V) and a low output range (1.2 V to1.85 V). The SW4A/B output range is set by the PUMS configuration at startup and cannot be changed dynamically by software. This means that If the PUMS are set to allow SW4A to come up in the high output voltage range, the output can only be changed between 2.5 V or 3.15 V and cannot be programmed in the low output range. If software sets the SW4AHI[1:0]= 00, when the PUMS is set to come up into the high voltage range, the output voltage is controlled through the SW4x[4:0] bits by software and cannot be programmed into the high voltage range. When changing the voltage within either the high or low voltage range, the switching regulator should be forced into PWM mode to change the voltage.

SW4xHI[1:0]	Set point selected by	Output Voltage (V)
00	SW4x[4:0]	See Table 43
01	SW4xHI[1:0]	2.5
10	SW4xHI[1:0]	3.15

Set Point	SW4x[4:0]	SW4x Output (V)	Set Point	SW4x[4:0]	SW4x Output (V)
0	00000	1.200	16	10000	1.600
1	00001	1.225	17	10001	1.625
2	00010	1.250	18	10010	1.650
3	00011	1.275	19	10011	1.675
4	00100	1.300	20	10100	1.700
5	00101	1.325	21	10101	1.725
6	00110	1.350	22	10110	1.750
7	00111	1.375	23	10111	1.775
8	01000	1.400	24	11000	1.800
9	01001	1.425	25	11001	1.825
10	01010	1.450	26	11010	1.850
11	01011	1.475	27	11011	Reserved
12	01100	1.500	28	11100	Reserved
13	01101	1.525	29	11101	Reserved
14	01110	1.550	30	11110	Reserved
15	01111	1.575	31	11111	Reserved

Table 43. SW4A/B Output Voltage Programmability

Table 44. SW4A/B Electrical Specifications

Characteristics noted under conditions BP=V_{SW4xIN} = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP=V_{SW4xIN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes
SW4A/B Bu	uck Regulator				•	•
	Operating Input Voltage					(51)
V _{SW4xIN}	 PWM operation, 0 mA < IL < I_{MAX} 	3.0	-	4.5	Unit V mV mA A mV	
	 PFM operation, 0 mA < IL < IL_{MAX} 	2.8	-	4.5		
	Output Voltage Accuracy					
V _{SW4xACC}	PWM mode including ripple, load regulation, and transients	Nom-3%	Nom	Nom+3%	mV mA	(50)
	PFM Mode, including ripple, load regulation, and transients	Nom-3%	Nom	Nom+3%		
	Continuous Output Load Current, V _{INMIN} < BP < 4.5 V				mA	
Leve	PWM mode independent outputs	-	-	500		
I _{SW4x}	PWM mode single/dual phase	-	-	1000		
	PFM mode	-	50	-		
	Current Limiter Peak Current Detection, V _{IN} = 3.6 V					
I _{SW4xPEAK}	Current through inductor dual phase/independent outputs	-	1.0	-	А	
	Current through inductor single phase	-	2.0	-		
V _{SW4xOS-}	Start-up Overshoot			25	m)/	
START	• IL = 0 mA	-	-	20	mv	
+	Turn-on Time					
t _{ON-SW4x}	 Enable to 90% of end value IL = 0 mA 	-	-	500	μs	

Table 44. SW4A/B Electrical Specifications

Characteristics noted under conditions BP=V_{SW4xIN} = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP=V_{SW4xIN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
SW4A/B B	uck Regulator (CONTINUED)		•			
	Switching Frequency					
f _{SW4}	• PLLX = 0	-	2.0	-	MHz	
	• PLLX = 1	-	4.0	-		
	Quiescent Current Consumption					
I _{SW4xQ}	 APS Mode, IL=0 mA; device not switching 	-	160	-	μA	
	PFM Mode, IL = 0 mA; device not switching	-	15	-	Pro -	
	Efficiency Independent Outputs					
	• PFM, 3.15 V, 10 mA	-	79	-		
	• PWM, 3.15 V, 50 mA	-	93	-		
	• PWM, 3.15 V, 250 mA	-	92	-		
η _{SW4x}	• PWM, 3.15 V, 500 mA	-	82	-	%	(52)
	• PFM, 1.2 V, 10 mA	-	72	-		
	• PWM, 1.2 V, 50 mA	-	71	-		
	• PWM, 1.2 V, 250 mA	-	81	-		
	• PWM 1.2 V, 500 mA	-	78	-		

Notes:

50. Transient loading for load steps of IL_{MAX} / 2 at 100 mA/ μ s.

51. When SW4A/B is set to 3.0 V and above the regulator may drop out of regulation when BP nears the output voltage.

52. Efficiency numbers at V_{SW4xIN} = 3.6 V, excludes the quiescent current.

7.5.4.7 SW5

<u>BP</u> SW5IN SW5MODE ISENSE C_{INSW5} . Controller SW5 SW5LX Driver L_{SW5} ☆ D_{sw5} C_{OSW5} SW5FAULT SPI GNDSW5 Interface ÷ Internal SPI Compensation Z2 SW5FB Z1 V_{REF} ΕA DAC

SW5 is a fully integrated synchronous buck PWM voltage mode controlled DC/DC regulator.

Figure 15. SW5 Block Diagram

The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator will limit the current through cycle by cycle operation and alert the system through the SW5FAULT SPI bit and issue an SCPI interrupt via the INT pin.

SW5 can be programmed in step sizes of 25 mV as shown in <u>Table 45</u>. If the software wants to change the output voltage after power-up, the regulator should be forced into PWM mode to change the voltage.

Set Point	SW5[4:0]	SW5 Output (V)	Set Point	SW5[4:0]	SW5 Output (V)
0	00000	1.200	16	10000	1.600
1	00001	1.225	17	10001	1.625
2	00010	1.250	18	10010	1.650
3	00011	1.275	19	10011	1.675
4	00100	1.300	20	10100	1.700
5	00101	1.325	21	10101	1.725
6	00110	1.350	22	10110	1.750
7	00111	1.375	23	10111	1.775
8	01000	1.400	24	11000	1.800
9	01001	1.425	25	11001	1.825
10	01010	1.450	26	11010	1.850
11	01011	1.475	27	11011	Reserved
12	01100	1.500	28	11100	Reserved
13	01101	1.525	29	11101	Reserved
14	01110	1.550	30	11110	Reserved
15	01111	1.575	31	11111	Reserved

Table 45. SW5 Output Voltage Programmability

Table 46. SW5 Electrical Specifications

Characteristics noted under conditions BP=V_{SW5IN} = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP=V_{SW5IN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
SW5 BUCK	REGULATOR	1		1		
V _{SW5IN}	 Operating Input Voltage PWM operation, 0 mA < IL < I_{MAX} PFM operation, 0 mA < IL < IL_{MAX} 	3.0 2.8	-	4.5 4.5	V	
V _{SW5ACC}	Output Voltage Accuracy PWM mode including ripple, load regulation, and transients PFM Mode, including ripple, load regulation, and transients 	Nom-3% Nom-3%	Nom Nom	Nom+3% Nom+3%	mV	(53)
I _{SW5}	Continuous Output Load Current, V _{INMIN} < BP < 4.5 V • PWM mode • PFM mode	-	- 50	1000 -	mA	
I _{SW5PEAK}	Current Limiter Peak Current Detection • V _{SW5IN} = 3.6 V, Current through Inductor		2.0	-	А	
V _{SW5} OS-START	Start-up Overshoot • IL = 0 mA	-	-	25	mV	
t _{ON-SW5}	Turn-on Time Enable to 90% of end value IL = 0 mA 		-	500	μs	
f _{SW5}	Switching Frequency • PLLX = 0 • PLLX = 1	-	2.0 4.0	-	MHz	
I _{SW5Q}	Quiescent Current Consumption APS Mode, IL=0 mA; device not switching PFM Mode, IL = 0 mA; device not switching 	-	160 15	-	μA	
η _{SW5}	Efficiency • PFM, 1.8 V, 1.0 mA • PWM, 1.8 V, 50 mA • PWM, 1.8 V, 500 mA • PWM, 1.8 V, 1000 mA		80 79 86 82		%	(54)

Notes

53. Transient Loading for load Steps of ILMAX/2 at 100 mA/ $\mu s.$

54. Efficiency numbers at V_{SW5IN} =3.6 V, Excludes the quiescent current.

7.5.4.8 Dynamic Voltage Scaling

To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor. SW1A/B and SW2 allow for two different set points with controlled transitions to avoid sudden output voltage changes, which could cause logic disruptions on their loads.

Preset operating points for SW1A/B and SW2 can be set up for:

- Normal operation: output value selected by SPI bits SWx[5:0], refer to <u>Table 47</u>.
- Standby mode: can be higher or lower than normal operation, but is typically selected to be the lowest state retention voltage for a given processor. The voltage set points are controlled by SPI bits SWxSTBY[5:0] and a Standby event.

Voltage transitions are governed by the SWxDVSSPEED[1:0] SPI bits shown in Table 48.

STANDBY	Set Point Selected by
0	SWx[4:0]
1	SWxSTBY[4:0]

Table 47. DVS Control Logic Table for SW1A/B and SW2

Table 48. DVS Speed Selection

SWxDVSSPEED[1:0]	Function
00	12.5 mV step each 2.0 μ s
01 (default)	12.5 mV step each 4.0 μs
10	12.5 mV step each 8.0 μs
11	12.5 mV step each 16.0 μs

The regulator has a strong sourcing and sinking capability in the PWM mode. Therefore, the rising/falling slope is determined by the regulator in PWM mode. However, if the regulators are programmed in PFM, or APS mode during a DVS transition, the falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.

Voltage transitions programmed through SPI(SWx[4:0]) on SW3 and SW5 will step in increments of 25 mV per 4.0 μ s, SW4A/B will step in increments of 25 mV per 8.0 μ s when SW4xHI[1:0]=00, and SW4A/B will step in increments of 25 mV per 16 μ s when SW4xHI[1:0] \neq 00. Additionally, SW3, SW4/B, and SW5 include standby mode set point programmability.

Figure 16 shows the general behavior for the switching regulators when initiated with SPI programming or standby control.

SW1 and SW2 also contain Power Good. The power good signal is an active high open drain signal. When SWxPWGD is high, it means the regulator output has reached its programmed voltage. The SWxPWGD voltage outputs will be low during the DVS period and if the current limit is reached on the switching regulator. During the DVS period, the overcurrent condition on the switching regulator should be masked. If the current limit is reached outside of a DVS period, the SWxPWGD pin will stay low until the current limit condition is removed.

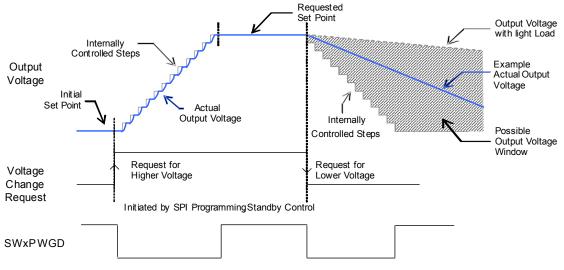


Figure 16. Voltage Stepping with DVS

7.5.5 Boost Switching Regulator

SWBST is a boost switching regulator with a programmable output, which defaults to 5.0 V on power-up, operating at 2.0 MHz. It integrates the switching NMOS transistor on-chip, and requires an external fly back schottky diode, inductor, and input/output capacitors. The parasitic leakage path for a boost regulator will cause the output voltage SWBSTOUT and SWBSTFB to sit at a schottky voltage drop below the battery voltage whenever SWBST is disabled.

SWBST supplies the VUSB regulator for the USB PHY.

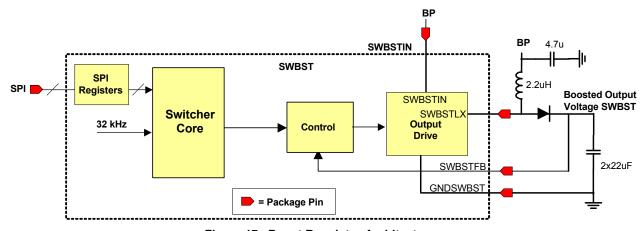


Figure 17. Boost Regulator Architecture

SWBST output voltage is programmable via the SWBST[1:0] SPI bits as shown in Table 49.

Parameter	Voltage	SWBST Output Voltage
SWBST[1:0]	00	5.00 (default)
	01	5.05
	10	5.10
	11	5.15

	Table 49.	SWBST	Voltage	Programming
--	-----------	-------	---------	-------------

SWBST can be controlled by SPI programming in PFM, APS, and Auto mode. Auto mode transitions between PFM and APS mode based on the load current. By default SWBST is powered up in Auto mode.

Parameter	Voltage	SWBST Mode
	00	Off
SWBSTMODE[1:0]	01	PFM
SWBSTSTBYMODE[1:0]	10	Auto (default)
	11	APS

Table 51. SWBST Electrical Specifications

Characteristics noted under conditions BP = S_{WBSTIN} = 3.6 V, -40 °C $\leq T_A \leq$ 85 °C, unless otherwise noted. Typical values at BP = S_{WBSTIN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic		Тур	Max	Unit	Notes
SWITCH MO	DE SUPPLY SWBST			1	1	
V _{SWBST}	Average Output Voltage • 3.0 V < V _{IN} < 4.5 V, 0 mA < IL < IL _{MAX}	Nom-4%	V _{NOM}	Nom+3%	V	(55)
V _{SWBSTACC}	Output Ripple • 3.0 V < V _{IN} < 4.5 V, 0 mA < IL < IL _{MAX} , excluding reverse recovery of Schottky diode	-	-	120 mV	Vp-р	
SWBST _{ACC}	Average Load Regulation • V _{IN} = 3.6 V, 0 mA < IL < IL _{MAX}	-	0.5	-	mV/mA	
V _{SWBST} LINEAREG	Average Line Regulation • 3.0 V < V _{IN} < 4.5 V, IL = IL _{MAX}	-	50	-	mV	
I _{SWBST}	Continuous Load Current • $3.0 \text{ V} < \text{V}_{\text{IN}} < 4.5 \text{ V}, \text{V}_{\text{OUT}} = 5.0 \text{ V}$		-	380	mA	
I _{SWBSTPEAK}	Peak Inductor Current Limit • V _{IN} = 3.6 V	-	1800	-	mA	
V _{SWBSTOS-} START	Start-up Overshoot • IL = 0 mA	-	-	500	mV	
t _{ON-SWBST}	Turn-on Time • Enable to 90% of V _{OUT} IL = 0 mA	-	-	2.0	ms	
f _{SWBST}	Switching Frequency	-	2.0	-	MHz	
V _{SWBS} TRANSIENT	Transient Load Response, IL from 1.0 mA to 100 mA in 1.0 μs steps • Maximum transient Amplitude	-	-	300	mV	
V _{SWBS} TRANSIENT	Transient Load Response, IL from 100 mA to 1.0 mA in 1.0 μs steps • Maximum transient Amplitude	-	-	300	mV	
V _{SWBS} TRANSIENT	Transient Load Response, IL from 1.0mA to 100 mA in 1.0 μs steps • Time to settle 80% of transient	-	-	500	μs	
V _{SWBS} TRANSIENT	Transient Load Response, IL from 100 mA to 1.0 mA in 1.0 μs steps • Time to settle 80% of transient	-	-	20	ms	
η _{SWBST}	Efficiency, IL = IL _{MAX}	65	80	-	%	

Table 51. SWBST Electrical Specifications

Characteristics noted under conditions BP = S_{WBSTIN} = 3.6 V, -40 °C $\leq T_A \leq$ 85 °C, unless otherwise noted. Typical values at BP = S_{WBSTIN} = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes		
SWITCH MO	SWITCH MODE SUPPLY SWBST (CONTINUED)							
ISWBSTBIAS	Bias Current Consumption PFM or Auto mode 	-	35	-	μA			
I _{LEAK-SWBST} NMOS Off Leakage • SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 00		-	1.0	6.0	μA			

Notes:

55. V_{IN} is the low side of the inductor that is connected to BP.

7.5.6 Linear Regulators (LDOs)

This section describes the linear regulators provided. For convenience, these regulators are named to indicate their typical or possible applications, but the supplies are not limited to these uses and may be applied to any loads within the specified regulator capabilities.

A low-power standby mode controlled by STANDBY is provided for the regulators with an external pass device, in which the bias current is aggressively reduced. This mode is useful for deep sleep operation, where certain supplies cannot be disabled, but active regulation can be tolerated with less parametric requirements. The output drive capability and performance are limited in this mode.

7.5.6.1 General Guidelines

The following applies to all linear regulators, unless otherwise specified.

- Parametric specifications assume the use of low ESR X5R/X7R ceramic capacitors with 20% accuracy and 15% temperature spread, for a worst case stack up of 35% from the nominal value. Use of other types with wider temperature variation may require a larger room temperature nominal capacitance value to meet performance specs over temperature. Capacitor derating as a function of DC bias voltage requires special attention. Minimum bypass capacitor guidelines are provided for stability and transient performance. However larger values may be applied, but performance metrics may be altered and generally improved and should be confirmed in system applications.
- Regulators with an external PNP transistor require an equivalent resistance (including the ESR) in series with the output capacitor, as noted in the specific regulator sections.
- Output voltage tolerance specified for each of the linear regulators include process variation, temperature range, static line
 regulation, and static load regulation.
- In the Low-power mode, the output performance is degraded. Only those parameters listed in the Low-power mode section are guaranteed. In this mode, the output current is limited to much lower levels than in the active mode.
- When a regulator gets disabled, the output will be pulled to ground by an internal pull-down. The pull-down is also activated when RESETB goes low.

7.5.6.2 LDO Regulator Control

The regulators with embedded pass devices (VPLL, VGEN1, and VUSB) have an adaptive biasing scheme thus, there are no distinct operating modes such as a Normal mode and a Low-power mode. Therefore, no specific control is required to put these regulators in a Low-power mode.

The external pass regulator (VDAC) can operate in both normal or low-power mode. Since a load current detection cannot be performed for this regulator, the transition between both modes is not automatic and is controlled by setting the corresponding mode bits for the desired operational behavior.

The regulators VUSB2, and VGEN2 can be configured for using the internal or external pass device. For both configurations, the transition between normal and Low-power modes is controlled by setting the VxMODE bit for the specific regulator. If configured with an internal pass device, the transition between normal and low-power mode will be automatic. If configured with an external pass device, the transition between modes must be manually controlled.

The regulators can be disabled and the general purpose outputs can be forced low when going into Standby, note that the Standby response timing can be modified with the STBYDLY function, as described in the Power Saving section. Each regulator has an associated SPI bit for this. When the bit is not set, STANDBY is of no influence. The actual operating mode of the regulators as a function of STANDBY is not reflected through SPI, in other words, the SPI will read what is programmed and not the actual state.

VxEN	VxMODE	VxSTBY	STANDBY ⁽⁵⁶⁾	Regulator Vx
0	Х	Х	Х	Off
1	0	0	Х	On
1	1	0	Х	Low-power
1	Х	1	0	On
1	0	1	1	Off
1	1	1	1	Low-power
Notoo				

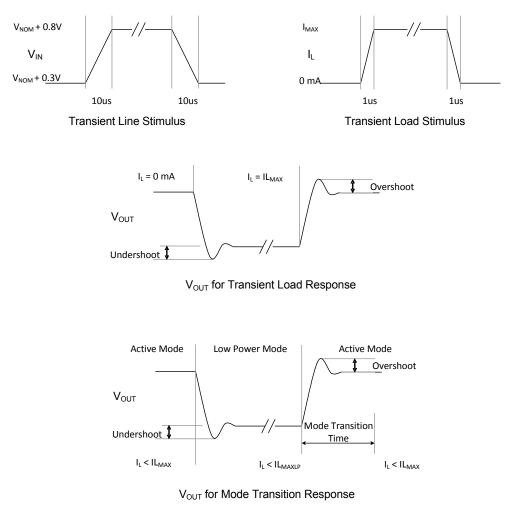
Table 52. LDO Regulator Control (External Pass Device LDOs)

Notes

56. STANDBY refers to a Standby event as described in Power Saving

For regulators operating with internal pass devices, only VxEN and VxSTBY bits will impact the state of the respective LDO in normal or Standby mode, as shown in <u>Table 53</u>.

Table 53. LDO Regulator Control (internal pass device LDOs)


VxEN	VxSTBY	STANDBY ⁽⁵⁷⁾	Regulator Vx
0	х	Х	Off
1	0	Х	On
1	1	0	On
1	1	1	Off

Notes

57. STANDBY refers to a Standby event as described in Power Saving

7.5.6.3 Transient Response Waveforms

The transient load and line response are specified with the waveforms depicted in <u>Figure 18</u>. Note, the transient load response refers to the overshoot only, and excludes the DC shift. The transient line response refers to the sum of both, overshoot and DC shift. These conditions are also valid for the mode transition response.

7.5.6.4 Short-circuit Protection

The higher current LDOs, and those most accessible in product applications, include short-circuit detection and protection (VDAC, VUSB, VUSB2, VGEN1, and VGEN2). The short-circuit protection (SCP) system includes debounced fault condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product damage. If a short-circuit condition is detected, typically 20% above IL_{MAX}, the LDO will be disabled by resetting its VxEN bit, while at the same time, an interrupt SCPI will be generated to flag the fault to the system processor. The SCPI interrupt is maskable through the SCPM mask bit.

The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, then not only is no interrupt generated, but also the regulators will not automatically be disabled upon a short-circuit detection. However, the built-in current limiter will continue to limit the output current of the regulator. Note that by default, the REGSCPEN bit is not set, so at start-up, none of the regulators in an overload condition are disabled.

7.5.6.5 VPLL

VPLL is provided for isolated biasing of the application processors' PLLs that serves as the clock generation in support of protocol and peripheral needs. Depending on the application and power requirements, this supply may be considered for sharing with other loads, but noise injection must be avoided and filtering added if necessary to ensure suitable PLL performance.

The VPLL regulator has a dedicated input supply pin.VINPLL can be connected to either BP or a 1.8 V switched mode power supply rail such as from SW5 for the two lower set points of the VPLL regulator (VPLL[1:0] = 00, 01). In addition, when the two upper set points (VPLL[1:0] = 10,11) are used, the VINPLL inputs can be connected to either BP or a 2.2 V nominal external supply rail, to improve power dissipation.

Parameter Value		Function ILoad max		Input Supply
	00	output = 1.2 V	50 mA	BP or 1.8 V
VPLL[1:0]	01	output = 1.25 V	50 mA	BP or 1.8 V
VFLL[1.0]	10	output = 1.50 V	50 mA	BP or External supply
	11	output = 1.8 V	50 mA	BP or External supply

Table 54. VPLL Voltage Control

Table 55. VPLL Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes	
GENERAL	GENERAL						
V _{INPLL}	 Operating Input Voltage Range V_{INMIN} to V_{INMAX} VPLL all settings, BP biased VPLL [1:0] = 00, 01 (SW5 = 1.8 V) VPLL, [1:0] = 10, 11, External Switch 	UVDET 1.75 2.15	- 1.8 2.2	4.5 4.5 4.5	V		
I _{PLL}	Operating current Load range	-	-	50	mA		

VPLL ACTIVE MODE – DC

V _{PLL}	Output Voltage V _{OUT}	V _{NOM} - 0.05	V _{NOM}	V _{NOM} + 0.05	V	
V _{PLL-LOPP}	Load Regulation • 1.0 mA < IL < IL _{MAX}	-	0.35	-	mV/mA	
V _{PLL-LIPP}	Line Regulation	-	5.0	-	mV	
I _{PLL-Q}	Quiescent Current • IL = 0 mA	-	8.0	-	μΑ	
I _{PLLLIM}	Current Limit Output voltage forced to VPLL_{NOM}/2 	54	78	120	mA	

VPLL ACTIVE MODE – AC

$VPLL_{PSRR} \begin{array}{l} PSRR \\ IL = 75\% \text{ of } IL_{MAX}, 20 \text{ Hz to } 20 \text{ HHz} \\ \bullet \text{ V}_{INPLL} = \text{UVDET} \\ \bullet \text{ V}_{INPLL} = \text{V}_{NOM} + 1.0 \text{ V}, > \text{UVDET} \end{array}$	-	70 75	-	dB	
---	---	----------	---	----	--

Table 55. VPLL Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes
VPLL ACTIV	E MODE – AC (CONTINUED)					
t _{ON-VPLL}	 Turn-on Time Enable to 90% of end value V_{INPLL} = V_{INMIN}, V_{INMAX}; IL = 0 mA 	-	-	140	μs	
t _{OFF-VPLL}	Turn-off Time • Disable to 10% of initial value V _{INPLL} = V _{INMIN} , V _{INMAX} ; IL = 0 mA	0.05	-	10	ms	
VPLL _{OS-} START	Start-up Overshoot • V _{INPLL} = V _{INMIN} , V _{INMAX} IL = 0 mA	-	1.0	2.0	%	
V _{PLL-LO} TRANSIENT	Transient Load Response • V _{INPLL} = V _{INMIN} , V _{INMAX}	-	50	70	mV	
V _{PLL-LI} TRANSIENT	Transient Line Response • IL = 75% of IL _{MAX}	-	5.0	8.0	mV	

7.5.6.6 VREFDDR

VREFDDR is an internal PMOS half supply voltage follower. The output voltage is at one half the input voltage. It's typical application is as the V_{REF} for DDR memories. A filtered resistor divider is utilized to create a low frequency pole. This divider then uses a voltage follower to drive the load.

Table 56. VREFDDR Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic		Тур	Max	Unit	Notes
GENERAL						
V _{REFFDDRIN}	Operating Input Voltage Range V_{INMIN} to V_{INMAX}	1.2	-	1.8	V	
I _{REFDDR} Operating Current Load Range IL _{MIN} to IL _{MAX}		0.0	-	10	mA	
VREFDDR A	CTIVE MODE – DC					
V _{REFDDR}	Output Voltage V _{OUT}	-	V _{IN} /2	-	V	
V _{REFDDRTOL}	Output Voltage tolerance • 0.6 mA < IL < 10 mA	-1.0	-	1.0	%	
V _{REFDDR} LOPP	Load Regulation • 1.0 mA < IL < IL _{MAX}	-	0.5	-	mV/mA	
I _{REFDDRQ}	Quiescent Current • IL = 0 mA	-	8.0	-	μA	
IREFDDRLIM	Current Limit Output voltage forced to VREFDDR_{NOM}/2 	12	28	55	mA	

VREFDDR ACTIVE MODE – AC

	Turn-on Time					
t _{ON-VREFDDR}	+ Enable to 90% of end value $V_{REFDDRIN}$ = V_{INMIN} , V_{INMAX} ; IL = 0 mA	-	-	100	μs	

Table 56. VREFDDR Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes
t _{OFF-} VREFDDR	Turn-off Time • Disable to 10% of initial value V _{REFDDRIN} = V _{INMIN} , V _{INMAX} ; IL = 0 mA	0.05	-	10	ms	
VREFDDR ACTIVE MODE – AC (CONTINUED)						
V _{REFDDROS}	Start-up Overshoot • V _{REFDDRIN} = V _{INMIN} , V _{INMAX} IL = 0 mA	-	1.0	2.0	%	
V _{REFDDRL} TRANSIENT	Transient Load Response • V _{REFDDRIN} = V _{INMIN} , V _{INMAX}	-	5.0	-	mV	

7.5.6.7 VUSB

The VUSB regulator is used to supply 3.3 V to the external USB PHY, it is powered from the SWBST boost supply to ensure current sourcing compliance through the normal discharge range of the battery/supply input. VUSB has an internal PMOS pass FET which will support loads of up to 100 mA.

Table 57. VUSB Electrical Characteristics

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes
VUSB REGU	ILATOR					
V _{USBIN}	Operating Input Voltage Range V _{INMIN} to V _{INMAX} Supplied by SWBST 	V _{SWBST} - 4%	-	V _{SWBST} + 3%	V	
I _{USB}	Operating Current Load Range IL _{MIN} to IL _{MAX}	0.0	-	100	mA	
VUSB ACTI	/E MODE - DC					_

V _{USB}	Output Voltage V _{OUT}	V _{NOM} - 4%	3.3	V _{NOM} + 4%	V	
V _{USBLOPP}	Load Regulation • 0 mA < IL < IL _{MAX} from DM / DP		1.0	-	mV/mA	
V _{USBLIPP}	Line Regulation	-	-	20	mV	
I _{USBLIM}	Current Limit Output voltage forced to VUSB_{NOM}/2 	120	180	225	mA	

VUSB ACTIVE MODE - AC

VUSB _{PSRR}	PSRR IL = 75% of IL _{MAX} 20 Hz to 20 kHz				dB	
1 OKAY	 V_{USBIN} = V_{INMIN} + 100 mV 	-	65	-		

7.5.6.8 VUSB2

VUSB2 has an internal PMOS pass FET to support light loads. An external PNP configuration is offered to avoid excess on-chip power dissipation at high loads and large differentials between BP and output settings. The input pin for the integrated PMOS option is shared with the base current drive pin for the external PNP option. The external PNP configuration must be committed as a hardwired board level implementation. The recommended PNP device is the ON SemiconductorTM NSS12100XV6T1G, which is capable of handling up to 250 mW of continuous dissipation, at minimum footprint and 75 °C ambient temperature. For use cases where up to 500 mW of dissipation is required, the recommended PNP device is the ON Semiconductor NSS12100UW3TCG. For stability reasons, a total resistance of 50 m $\Omega \pm 20\%$ in series with the output capacitance is required. The total resistance includes the ESR of the capacitor plus an external resistance provided by a discrete resistor or PCB circuit trace.

The nominal output voltage of this regulator is configured through SPI, and can be selected among 2.5 V, 2.6 V, 2.75 V, or 3.0 V. The output current when working with the internal pass FET is 65 mA, and could be up to 350 mA when working with an external PNP.

		Output	ILoad max			
Bits	Bits Value		VUSB2CONFIG=0 Internal Pass FET	VUSB2CONFIG=1 External PNP		
	00	2.50 V	65 mA	350 mA		
V/USB2[1:0]	01	2.60 V	65 mA	350 mA		
VUSB2[1:0]	10	2.75 V	65 mA	350 mA		
	11	3.00 V	65 mA	350 mA		

 Table 58.
 VUSB2 Voltage Control

Table 59. VUSB2 Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic		Тур	Мах	Unit	Notes
GENERAL						
V _{USB2IN}	Operating Input Voltage Range V _{INMIN} to V _{INMAX}	V _{NOM} + 0.30	-	4.5	V	
I _{USB2}	Operating Current Load Range IL _{MIN} to IL _{MAX} Internal pass FET External PNP Not exceeding PNP max power 	0.0 0.0	-	65 350	mA	
V _{USB2IN}	Extended Input Voltage RangePerformance may be out of specification	UVDET	-	4.5	V	

VUSB2 ACTIVE MODE - DC

V _{USB2}	Output Voltage V _{OUT}	V _{NOM} - 3%	V _{NOM}	V _{NOM} + 3%	V	
V _{USB2LOPP}	Load Regulation • 1.0 mA < IL < IL _{MAX}	-	0.25	-	mV/mA	
V _{USB2LIPP}	Line Regulation	-	8.0	-	mV	
I _{USB2Q}	 Active Mode Quiescent Current IL = 0 mA, Internal PMOS configuration IL = 0 mA, External PNP configuration 	-	25 30	-	μΑ	
I _{USB2DRVLIM}	VUSB2DRV Base Drive Current Limit External PNP mode only 	3.36	4.62	6.10	mA	(58)

Table 59. VUSB2 Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic		Тур	Max	Unit	Notes
VUSB2 LOW	-POWER MODE - DC			1		
V _{USB2}	Output Voltage V _{OUT} • IL _{MINLP} < IL < IL _{MAXLP}	V _{NOM} - 3%	V _{NOM}	V _{NOM} + 3%	V	
I _{USB2LP}	Current Load Range IL _{MINLP} to IL _{MAXLP}	0.0	-	3.0	mA	
I _{USB2Q}	Low-power Mode Quiescent Current • IL = 0 mA	_	8.0	_	μA	
VUSB2 ACTI	VE MODE - AC					
VUSB2 _{PSRR}	PSRR IL = 75% of IL _{MAX} , 20 Hz to 20 kHz • V _{USB2IN} = V _{INMIN} + 100 mV • V _{USB2IN} = V _{NOM} + 1.0 V	-	30 30		dB	
t _{ON-VUSB2}	Turn-on Time • Enable to 90% of end value, V _{USB2IN} = V _{INMIN} , V _{INMAX} ; IL = 0 mA	-	-	1.0	ms	
t _{OFF-VUSB2}	Turn-off Time • Disable to 10% of initial value, V _{USB2IN} = V _{INMIN} , V _{INMAX} IL = 0 mA	0.05	-	10	ms	
VUSB2 _{OS-} START	Start-up Overshoot • IL = 0 mA	-	1.0	2.0	%	
VUSB2 _{LO} TRANSIENT	Transient Load Response V _{USB2IN} = V _{INMIN} , V _{INMAX} • VUSB2=01, 10, 11 • VUSB2=00	-	1.0 50	2.0 70	% mV	
VUSB2 _{LI} TRANSIENT	Transient Line Response • IL = 75% of IL _{MAX}	-	5.0	8.0	mV	
t _{MOD-VUSB2}	Mode Transition Time • From low-power to active and from active to low-power V _{USB2IN} = V _{INMIN} , V _{INMAX} ; IL = IL _{MAXLP}	-	-	100	μs	
VUSB _{MODE} RES	Mode Transition Response • From low-power to active and from active to low-power V _{USB2IN} = V _{INMIN} , V _{INMAX} ; IL = IL _{MAXLP}	-	1.0	2.0	%	

Notes

58. V_{USB2} current limit is given by $I_{USB2DRVLIM} x \beta$ of external PNP transistor

7.5.6.9 VDAC

The primary applications of this power supply is the TV-DAC. However, these supplies could also be used for other peripherals if one of these functions is not required. Low-power modes and programmable standby options can be used to optimize power efficiency during deep sleep modes.

An external PNP is utilized for VDAC to avoid excess on-chip power dissipation at high loads and large differentials between BP and output settings. External PNP devices must always be connected to the BP line in the application. The recommended PNP device is the ON Semiconductor NSS12100XV6T1G, which is capable of handling up to 250 mW of continuous dissipation at minimum footprint and 75 °C ambient temperature. For use cases where up to 500 mW of dissipation is required, the recommended PNP device is the ON Semiconductor NSS12100UW3TCG. For stability reasons, a total resistance of 110 m Ω

 $\pm 20\%$ in series with the output capacitance is required. The total resistance includes the ESR of the capacitor plus an external resistance provided by a discrete resistor or PCB circuit trace.

The nominal output voltage of this regulator can be configured through SPI and can be 2.5 V, 2.6 V, 2.7 V, or 2.775 V. The maximum output current along the external PNP is 250 mA.

Parameter	Value	Output Voltage	ILoad max
	00	2.500 V	250 mA
	01	2.600 V	250 mA
VDAC[1:0]	10	2.700 V	250 mA
	11	2.775 V	250 mA

Table 60. VDAC Voltage Control

Table 61. VDAC Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes

GENERAL

V _{DACIN}	Operating Input Voltage Range V_{INMIN} to V_{INMAX}	V _{NOM} + 0.25	-	4.5	V	
I _{DAC}	Operating Current Load Range IL _{MIN} to IL _{MAX} Not exceeding PNP max power 	0.0	-	250	mA	
V _{DACIN}	Extended Input Voltage Range Performance may be out of specification 	UVDET	-	4.5	V	

VDAC ACTIVE MODE – DC

V _{DAC}	Output Voltage V _{OUT}	V _{NOM} -3%	V _{NOM}	V _{NOM} + 3%	V	
V _{DACLOPP}	Load Regulation • 1.0 mA < IL < IL _{MAX}	-	0.20	-	mV/mA	
V _{DACLIPP}	Line Regulation	-	5.0	-	mV	
IDACQ	Active Mode Quiescent Current • IL = 0 mA	-	30	-	μA	
I _{DACDRVLIM}	VDACDRV Base Current Limit	-	5.3	-	mA	(59)

VDAC LOW-POWER MODE - DC - VDACMODE=1

V _{DAC}	Output Voltage V _{OUT}	V _{NOM} -3%	V _{NOM}	V _{NOM} + 3%	V	
I _{DAC}	Current Load Range IL _{MINLP} to IL _{MAXLP}	0.0	-	3.0	mA	
IDACQ	Low-power Mode Quiescent Current • IL = 0 mA	-	8.0	-	μA	

VDAC ACTIVE MODE - AC

VDAC _{PSRR}	PSRR IL = 75% of IL _{MAX} 20 Hz to 20 kHz • V _{DACIN} = V _{INMIN} + 100 mV • V _{DACIN} = V _{NOM} + 1.0 V	-	50 50	-	dB	
t _{ON-VDAC}	 Turn-on Time Enable to 90% of end value V_{DACIN} = V_{INMIN}, V_{INMAX}; IL = 0 mA 	-	-	1.0	ms	

34709

Table 61. VDAC Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Min	Тур	Max	Unit	Notes
Turn-off Time Disable to 10% of initial value V_{DACIN} = V_{INMIN}, V_{INMAX}; IL = 0 mA 	0.05	-	10	ms	
E MODE – AC (CONTINUED)					
	Turn-off Time • Disable to 10% of initial value V _{DACIN} = V _{INMIN} , V _{INMAX} ; IL = 0 mA	Turn-off Time • Disable to 10% of initial value V _{DACIN} = V _{INMIN} , V _{INMAX} ; IL = 0 mA 0.05 E MODE – AC (CONTINUED)	Turn-off Time • Disable to 10% of initial value V _{DACIN} = V _{INMIN} , V _{INMAX} ; IL = 0 mA 0.05 - E MODE – AC (CONTINUED) • Output • Output • Output	Turn-off Time • Disable to 10% of initial value V _{DACIN} = V _{INMIN} , V _{INMAX} ; IL = 0 mA 0.05 - 10 E MODE – AC (CONTINUED) • O • O • O • O	Turn-off Time • Disable to 10% of initial value V _{DACIN} = V _{INMIN} , V _{INMAX} ; IL = 0 mA 0.05 - 10 ms E MODE – AC (CONTINUED) • Output • Output • Output • Output • Output

VDAC _{OS-} START	Start-up Overshoot • V _{DACIN} = V _{INMIN} , V _{INMAX} ; IL = 0 mA	-	1.0	2.0	%	
VDAC _{LO} TRANSIENT	Transient Load Response • V _{DACIN} = V _{INMIN} , V _{INMAX}	-	1.0	2.0	%	
V _{DACLI} TRANSIENT	Transient Line Response • IL = 75% of IL _{MAX}	-	5.0	8.0	mV	
t _{MODE-VDAC}	Mode Transition Time • From low-power to active $V_{DACIN} = V_{INMIN}$, V_{INMAX} ; IL = IL _{MAXLP}	-	-	100	μs	
VDAC _{MODE} RES	Mode Transition Response • From low-power to active and from active to low-power V _{DACIN} = V _{INMIN} , V _{INMAX} : IL = IL _{MAXLP}	-	1.0	2.0	%	

Notes

59. V_DAC current limit is given by I_DACDRVLIM x β of external PNP transistor

7.5.6.10 VGEN1, VGEN2

General purpose LDOs, VGEN1, and VGEN2, are provided for expansion of the power tree to support peripheral devices, which could include EMMC cards, WLAN, BT, GPS, or other functional modules. These regulators include programmable set points for system flexibility. VGEN1 has an internal PMOS pass FET, and is powered from the SW5 buck for an efficiency advantage and reduced power dissipation in the pass device. VGEN2 is powered directly from the battery.

VGEN2 has an internal PMOS pass FET, which will support loads up to 50 mA. For higher current capability, drive for an external PNP is provided. The external PNP is offered to avoid excess on-chip power dissipation at high loads and large differentials between BP and output settings. The input pin for the integrated PMOS option is shared with the base current drive pin for the PNP option. The external PNP device is always connected to the BP line in the application. The recommended PNP device is the ON Semiconductor NSS12100XV6T1G which is capable of handling up to 250 mW of continuous dissipation at minimum footprint and 75 °C ambient temperature. For use cases where up to 500 mW of dissipation is required, the recommended PNP device is the ON Semiconductor NSS12100UW3TCG. For stability reasons, a total resistance of 60 m $\Omega \pm 20\%$ in series with the output capacitance is required. The total resistance includes the ESR of the capacitor plus an external resistance provided by a discrete resistor or PCB circuit trace.

The nominal output voltage of both VGEN1 and VGEN2 are SPI configurable with the VGENx[2:0] bits as shown in <u>Table 62</u> and <u>Table 63</u>.

Table 62.	VGEN1	Control Register	Bit Assignments
-----------	-------	-------------------------	-----------------

Parameter	Value	Output Voltage	ILoad max
-----------	-------	----------------	-----------

000	1.20	250 mA
001	1.25	250 mA
010	1.30	250 mA
011	1.35	250 mA
100	1.40	250 mA
101	1.45	250 mA
110	1.50	250 mA
111	1.55	250 mA
	001 010 011 100 101 110	001 1.25 010 1.30 011 1.35 100 1.40 101 1.45 110 1.50

Table 62. VGEN1 Control Register Bit Assignments

Table 63. VGEN2 Control Register Bit Assignments

		Output	ILoad	l max
Parameter	Value	Voltage	VGEN2CONFIG=0 Internal Pass FET	VGEN2CONFIG=1 External PNP
	000	2.50	50 mA	250 mA
	001	2.70	50 mA	250 mA
	010	2.80	50 mA	250 mA
VGEN2[2:0]	011	2.90	50 mA	250 mA
VGENZ[Z.0]	100	3.00	50 mA	250 mA
	101	3.10	50 mA	250 mA
	110	3.15	50 mA	250 mA
	111	3.30	50 mA	250 mA

Table 64. VGEN1 Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes
GENERAL	·					
V _{GEN1IN}	Operating Input Voltage Range V _{INMIN} to V _{INMAX} All settings 	1.75	1.8	1.85	V	
I _{GEN1}	Operating Current Load Range IL _{MIN} to IL _{MAX} Not exceeding PNP max power 	0.0	-	250	mA	
VGEN1 ACT	IVE MODE – DC		1	1	1	

V _{GEN1}	Output Voltage V _{OUT}	V _{NOM} -3%	V _{NOM}	V _{NOM} + 3%	V	
V _{GEN1LOPP}	Load Regulation • 1.0 mA < IL < IL _{MAX}	-	0.25	-	mV/mA	
V _{GEN1LIPP}	Line Regulation	-	5.0	-	mV	
I _{GEN1Q}	Active Mode Quiescent Current • IL = 0 mA	-	12	-	μA	
I _{GEN1LIM}	Current Limit Output voltage forced to VGEN1_{NOM}/2 	-	375	-	mA	

34709

Table 64. VGEN1 Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes
VGEN1 ACTI	VE MODE - AC					
	PSRR					
VGEN1 _{PSRR}	 IL = 75% of IL_{MAX} 20 Hz to 20 kHz VGEN1[2:0] = 000-101 	-	50	-	dB	
	 IL = 75% of ILMAX 20 Hz to 20 kHz VGEN1[2:0] = 110-111 	-	45	-		
	Turn-on Time					
t _{ON-VGEN1}	+ Enable to 90% of end value V_{GEN1IN} = $V_{INMIN},V_{INMAX};IL$ = 0 mA	-	-	1.0	ms	
	Turn-off Time					
t _{OFF-VGEN1}	+ Disable to 10% of initial value V_{GEN1IN} = $V_{INMIN},V_{INMAX};IL$ = 0mA	0.01	-	10	ms	
VGEN1 _{OS-}	Start-up Overshoot				0/	
START	 V_{GEN1IN} = V_{INMIN}, V_{INMAX}; IL = 0 mA 	-	1.0	2.0	%	
VGEN1 ACTI	VE MODE - AC (CONTINUED)					

VGEN1 _{LO}	Transient Load Response				%	
TRANSIENT	• V _{GEN1IN} = V _{INMIN} , V _{INMAX}	-	1.0	2.0		
V _{GEN1LI}	Transient Line Response					
TRANSIENT	• IL = 75% of IL _{MAX}	-	5.0	8.0	mV	
	Mode Transition Time					
t _{MODE-VGEN1}	+ From low-power to active and from active to low-power V_{GEN1IN} = $V_{INMIN},V_{INMAX};IL$ = IL_{MAXLP}	-	-	100	μs	
VGEN1	Mode Transition Response From low-power to active and from active to low-power 				%	
MODERES	$V_{GEN1IN} = V_{INMIN}, V_{INMAX}; IL = IL_{MAXLP}$	-	1.0	2.0		

Table 65. VGEN2 Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
VGEN2						
V _{GEN2IN}	Operating Input Voltage Range V _{INMIN} to V _{INMAX} • All settings, BP biased	V _{NOM} +0.25	-	4.5	V	
V _{GEN2IN}	 Extended Input Voltage Range BP Biased, Performance may out of specification for output levels VGEN2 [2:0] = 010 to 111 	UVDET	-	4.5	mV/mA	
I _{GEN2}	Operating Current Load Range IL _{MI} to IL _{MAX} Internal Pass FET 	0.0	-	50	mA	
I _{GEN2}	Operating Current Load Range IL _{MIN} to IL _{MAX} External PNP, Not exceeding PNP max power 	0.0	-	250	mA	
VGEN2 ACT	IVE MODE - DC					
V _{GEN2}	Output Voltage V _{OUT}	V _{NOM} - 3%	V _{NOM}	V _{NOM} + 3%	V	

Table 65. VGEN2 Electrical Specification

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Мах	Unit	Notes			
	Load Regulation								
V _{GEN2LOPP}	• 1.0 mA < IL < IL _{MAX}	-	0.20	-	mV/mA				
V _{GEN2LIPP}	Line Regulation	-	8.0	-	mV				
	Active Mode Quiescent Current								
IGEN2Q	• IL = 0	-	30	-	μA				
VGEN2 ACT	GEN2 ACTIVE MODE - DC (CONTINUED)								

 VGEN2DRV Base Drive Current Limit
 mA
 (60)

 • External PNP mode only
 2.4
 3.8
 5.5

VGEN2 LOW-POWER MODE - DC - VGEN2MODE = 1

V _{GEN2}	Output Voltage V _{OUT}	V _{NOM} - 3%	V _{NOM}	V _{NOM} + 3%	V	
I _{GEN2}	Current Load Range IL _{MINLP} to IL _{MAXLP}	0.0	-	3.0	mA	
I _{GEN2Q}	Low-power Mode Quiescent Current • IL = 0 mA	-	8.0	-	μA	

VGEN2 ACTIVE MODE - AC

	PSRR					
	IL = 75% of ILmax, 20 Hz to 20 kHz					
VGEN2 _{PSRR}		-	40	-	dB	
	• V _{GEN2IN} = V _{NOM} + 1.0 V	-	50	-		
	Turn-on Time					
t _{ON-VGEN22}	+ Enable to 90% of end value V_{GEN2IN} = $V_{INMIN},V_{INMAX};IL$ = 0 mA	-	-	1.0	ms	
	Turn-off Time					
t _{OFF-VGEN2}	+ Disable to 10% of initial value V_{GEN2IN} = $V_{INMIN},V_{INMAX};IL$ = 0 mA	0.05	-	10	ms	
VGEN2 _{OS-}	Start-up Overshoot					
START	 V_{GEN2IN} = V_{INMIN}, V_{INMAX}; IL = 0 mA 	-	1.0	2.0	%	
VGEN2LO	Transient Load Response					
TRANSIENT	 V_{GEN2IN} = V_{INMIN}, V_{INMAX} 	-	1.0	2.0	%	
V _{GEN2LI}	Transient Line Response					
TRANSIENT	• IL = 75% of IL _{MAX}	-	5.0	8.0	mV	
	Mode Transition Time					
t _{MODE-VGEN2}	+ From low-power to active V_{GEN2IN} = $V_{INMIN},V_{INMAX};IL$ = IL_{MAXLP}	-	-	100	μs	
NOTIN	Mode Transition Response					
VGEN 2 _{MODERES}	+ From low-power to active and from active to low-power V_{GEN2IN} = $V_{INMIN},V_{INMAX};IL$ = IL_{MAXLP}	-	1.0	2.0	%	

Notes

60. V_{GEN2} current limit is given by $I_{GEN2DRVLIM} \times \beta$ of external PNP transistor

7.6 Analog to Digital Converter

The ADC core is a 10 bit converter, supplied from VCORE. The ADC core and logic run at an internally generated frequency of approximately 1.33 MHz and has an integrated auto calibration circuit which reduces the offset and gain errors.

7.6.1 Input Selector

The ADC has a total of 16 input channels (nine internal and seven external). <u>Table 66</u> gives an overview of the characteristics of each of these channels.

Channel	ADSELx[3:0]	Signal read	Input Level	Scaling	Scaled Version
0	0000	Reserved	Reserved	Reserved	Reserved
1	0001	Reserved	Reserved	Reserved	Reserved
2	0010	Reserved	Reserved	Reserved	Reserved
3	0011	Die temperature	-40 – 150 °C		1.2 – 2.4 V
4	0100	Reserved	Reserved	Reserved	Reserved
5	0101	Reserved	Reserved	Reserved	Reserved
6	0110	Reserved	Reserved	Reserved	Reserved
7	0111	Reserved	Reserved	Reserved	Reserved
8	1000	Coin cell Voltage	0 – 3.6 V	X2/3	0 – 2.4 V
9	1001	ADIN9	0 – 2.4 V	x1	0 – 2.4 V
10	1010	ADIN10	0-2.4 V	x1	0 – 2.4 V
11	1011	ADIN11	0-2.4 V	x1	0 – 2.4 V
12	1100	ADIN12/TSX1	0 – 2.4 V	x1/x2	0 – 2.4 V / 0 -1.2 V
13	1101	ADIN13/TSX2	0-2.4 V	x1/x2	0 – 2.4 V / 0 -1.2 V
14	1110	ADIN14/TSY1	0-2.4 V	x1/x2	0 – 2.4 V / 0 -1.2 V
15	1111	ADIN15/TSY2	0 – 2.4 V	x1/x2	0 – 2.4 V / 0 -1.2 V

Table 66. ADC Inputs

Some of the internal signals are first scaled to adapt the signal range to the input range of the ADC. For details on scaling, see Dedicated Readings.

Table 67. ADC Input Specification

Parameter	Condition	Min	Тур	Max	Units
Source Impedance	No bypass capacitor at input	-	-	5.0	kOhm
	Bypass capacitor at input 10 nF	-	-	30	kOhm

When considerably exceeding the maximum input of the ADC at the scaled or unscaled inputs, the reading result will return a full scale. It has to be noted however, that this full scale does not necessarily yield a 1022 DEC reading due to the offsets and calibration applied. The same applies for when going below the minimum input where the corresponding 0000 DEC reading may not be returned.

7.6.2 Control

The ADC parameters are programmed by the processor via the SPI. When a reading sequence is finished, an interrupt ADCDONEI is generated. The interrupt can be masked with the ADCDONEM bit.

The ADC is enabled by setting ADEN bit high, then the ADC can start a series of conversions through SPI programming by setting the ADSTART bit. If the ADEN bit is low, the ADC will be disabled and in low-power mode. The ADC is automatically calibrated every time PMIC is powered.

The conversions will begin after a small analog synchronization of up to 30 microseconds, plus a programmable delay from 0 (default) up to 600 μ s, by programming the bits ADDLY1[3:0]. The ADDLY2[3:0] controls the delay between each of the conversions from 0 to 600 μ s. ADDLY3[3:0] controls the delay after the final conversion, and is only valid when ADCONT is high. ADDLY1, 2, and 3 are set to 0 by default.

ADDLYx[3:0]	Delay in μ s
0000	0.0
0001	40
0010	80
0011	120
0100	160
0101	200
0110	240
0111	280
1000	320
1001	360
1010	400
1011	440
1100	480
1101	520
1110	560
1111	600

Table	68	ADDLYx[3:0]	
Iable	00.		

There is a max of 8 conversions that will take place when the ADC is started. The register ADSELx[3:0] selects the channel which the ADC will read and store in the ADRESULTx register. The ADC will always start at the channel indicated in ADSEL0, and read up to and including the channel set by the ADSTOP[2:0] bits. For example, when ADSTOP[2:0] = 010, it will request the ADC to read channels indicated in ADSEL0, ADSEL1, and ADSEL2. When ADSTOP[2:0] = 111, all eight channels programmed by the value in ADSEL0-7 will be read. When the ADCONT bit is set high, it allows the ADC to continuously loop and read the channels from address 0 to the stop address programmed in ADSTOP. By default, the ADCONT is set low (disabled). In the continuous mode, the ADHOLD bit will allow the software to hold the ADC sequencer from updating the results register while the ADC results are read. Once the sequence of A/D conversions is complete, the ADRESULTx results are stored in four SPI registers (ADC 4 - ADC 7).

7.6.3 Dedicated Readings

7.6.3.1 Channel 0 to 2 Reserved

Channel 0 to Channel 2 are reserved.

7.6.3.2 Channel 3 Die Temperature

The relation between the read out code and temperature is given in <u>Table 69</u>.

Table 69. Die Temperature Voltage Reading

Parameter	Min	Тур	Мах	Unit
Die temperature read out code at 25 °C	-	680	-	Decimal
Slope temperature change per LSB	-	+0.426	-	°C/LSB
Slope error	-	-	5.0	%

The actual die temperature is obtained as follows: Die Temp = 25 + 0.426 * (ADC Code - 680)

7.6.3.3 Channel 4 to 7 Reserved

Channel 4 to Channel 7 are reserved.

7.6.3.4 Channel 8 Coin Cell Voltage

The voltage of the coin cell connected to the LICELL pin can be read on channel 8. Since the voltage range of the coin cell exceeds the input voltage range of the ADC, the LICELL voltage is scaled as V(LICELL)*2/3. In case the voltage at LICELL drops below the coin cell disconnect threshold, the voltage at LICELL can still be read through the ADC.

Conversion Code ADRESULTx[9:0]	Voltage at ADC input (V)	Voltage at LICELL (V)
1 111 111 110	2.400	3.6
1 000 000 000	1.200	1.8
0 000 000 000	0.000	0

7.6.3.5 Channel 9-11 ADIN9-ADIN11

There are three general purpose analog input channels that can be measured through the ADIN9-ADIN11 pins.

7.6.3.6 Channel 12-15 ADIN12-ADIN15

If the touch screen is not used, the inputs TSX1, TSX2, TSY1, and TSY2 can be used as general purpose inputs. They are respectively mapped on ADC channels 12, 13, 14, and 15.

7.6.4 Touch Screen Interface

The touch screen interface provides all circuitry required for the readout of a four-wire resistive touch screen. The touch screen X plate is connected to TSX1 and TSX2, while the Y plate is connected to TSY1 and TSY2. A local supply TSREF will serve as a reference. Several readout possibilities are offered.

If the touchscreen is not used, the inputs TSX1, TSX2, TSY1, and TSY2 can be used as general purpose ADC inputs. They are respectively mapped on ADC channels 12, 13, 14, and 15.

Touch Screen Pen detection bias can be enabled via the TSPENDETEN bit in the AD0 register. When this bit is enabled and a pen touch is detected, the TSPENDET bit in the Interrupt STATUS 0 register is set and the INT pin is asserted - unless the interrupt is masked. Pen detection is only active when TSEN is low.

The reference for the touch screen (Touch Bias) is TSREF and is powered from VCORE. During touch screen operation, TSREF is a dedicated regulator. No loads other than the touch screen should be connected here. When the ADC performs non touch screen conversions, the ADC does not rely on TSREF and the reference is disabled.

The readouts are designed such that the on chip switch resistances are of no influence on the overall readout. The readout scheme does not account for contact resistances, as present in the touch screen connectors. The touch screen readings will have to be calibrated by the user or the factory, where one has to point with a stylus to the opposite corners of the screen. When reading the X-coordinate, the 10-bit ADC reading represents a 10-bit coordinate, with '0' for a coordinate equal to X-, and full scale '1023' when equal to X+. When reading the Y-coordinate, the 10-bit ADC reading represents a 10-bit coordinate equal to X-, and full scale '1023' when equal to Y-, and full scale '1023' when equal to Y+. When reading contact resistance, the 10-bit ADC reading represents the voltage drop over the contact resistance created by the known current source multiplied by 2.

The X-coordinate is determined by applying TSREF over the TSX1 and TSX2 pins, while performing a high-impedance reading on the Y-plate through TSY1. The Y-coordinate is determined by applying TSREF between TSY1 and TSY2, while reading the TSX1 pin. The contact resistance is measured by applying a known current into the TSY1 pin of the touch screen and through the TSX2 pin, which is grounded. The voltage difference between the two remaining terminals TSY2 and TSX1 is measured by the ADC, and equals the voltage across the contact resistance. Measuring the contact resistance helps determine if the touch screen is touched with a finger or a stylus.

The TSSELx[1:0] allows the application processor to select its own reading sequence. The TSSELx[1:0] determines what is read during the touch screen reading sequence, as shown in <u>Table 71</u>. The touch screen will always start at TSSEL0 and read up to and including the channel set by TSSEL at the TSSTOP[2:0] bits. For example when TSSTOP[2:0] = 010, it will request the ADC to read channels indicated in TSSEL0, TSSEL1, and TSSEL2. When TSSTOP[2:0] = 111, all eight addresses will be read.

TSSELx[1:0]	Signals Sampled	
00	Dummy to discharge TSREF cap	
01	X - plate	
10	Y - plate	
11	Contact	

Table 71. Touch Screen Action Select

The touch screen readings can be repeated, as in the following example readout sequence, to reduce the interrupt rate and to allow for easier noise rejection. The dummy conversion inserted between the different readings allows the references in the system to be pre-biased for the change in touch screen plate polarity. It will read as '0'.

A touch screen reading will take precedence over an ADC sequence. If an ADC reading is triggered during a touch screen event, the ADC sequence will be overwritten by the touch screen data.

The first touch screen conversion can be delayed from 0 (default) to 600 μ s by programming the TSDLY1[3:0] bits. The TSDLY2[3:0] controls the delay between each of the touch screen conversions from 0 to 600 μ s. TSDLY[2:0] sets the delay after the last address is converted. TSDLY1, 2, and 3 are set to 0 by default.

Table 7	2. TS	DLYx[3:0]	l
---------	-------	-----------	---

TSDLYx[3:0]	Delay in uS
0000	0
0001	40
0010	80
0011	120
0100	160

TSDLYx[3:0]	Delay in uS
0101	200
0110	240
0111	280
1000	320
1001	360
1010	400
1011	440
1100	480
1101	520
1110	560
1111	600

Table 72. TSDLYx[3:0]

To perform a touch screen reading, the processor must do the following:

- 1. Enable the touch screen with TSEN
- 2. Select the touch screen sequence by programming the TSSEL0-TSSEL7 SPI bits.
- 3. Program the TSSTOP[2:0]
- 4. Program the delay between the conversion via the TSDLY1 and TSDLY2 settings.
- 5. Trigger the ADC via the TSSTART SPI bit
- 6. Wait for an interrupt indicating the conversion is done TSDONEI
- 7. And then read out the data in the ADRESULTx registers

7.6.5 ADC Specifications

Table 73. ADC Electrical Specifications

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
ADC		·				
ICONVERT	Conversion Current	-	1.0	-	mA	
	Converter Core Input Range					
V _{ADCIN}	Single-ended voltage readings	0.0	-	2.4	V	
	Differential readings	-1.2	-	1.2		
t _{CONVERT}	Conversion Time per channel	-	-	10	μS	
	Integral Non-linearity	-	-	3	LSB	
	Differential Non-linearity	-	-	1	LSB	
	Zero Scale Error (Offset)	-	-	±5	LSB	
	Full Scale Error (Gain)	-	-	±10	LSB	
	Drift Over-temperature	-	-	10	LSB	
t _{ON-OFF-ADC}	Turn On/Off Time	-	-	31	μS	

7.7 Auxiliary Circuits

7.7.1 General Purpose I/Os

The 34709 contains four configurable GPIO input/outputs for general purpose use. When configured as outputs, they can be configured as open-drain (OD) or CMOS (push-pull outputs). These GPIOs are low-voltage capable (1.2 or 1.8 V). In open-drain configuration these outputs can only be pulled up to 2.5 V maximum.

Each individual GPIO has a dedicated 16-bit control register. Table 74 provides the detailed bit descriptions.

SPI Bit	Description
DIR	GPIOLVx direction 0: Input (default) 1: Output
DIN	Input state of the GPIOLVx pin 0: Input low 1: Input High
DOUT	Output state of GPIOLVx pin 0: Output Low 1: Output High
HYS	Hysteresis 0: CMOS in 1: Hysteresis (default)
DBNC[1:0]	GPIOLVx input debounce time 00: no debounce (default) 01: 10 ms debounce 10: 20 ms debounce 11: 30 mS debounce
INT[1:0]	GPIOLVx interrupt control 00: None (default) 01: Falling edge 10: Rising edge 11: Both edges
PKE	Pad keep enable 0: Off (default) 1: On
ODE	Open-drain enable 0: CMOS (default) 1: OD
DSE	Drive strength enable 0: 4.0 mA (default) 1: 8.0 mA
PUE	Pull-up/down enable 0: pull-up/down off 1: pull-up/down on (default)
PUS[1:0]	Pull-up/Pull-down enable 00: 10 K active pull-down 01: 10 K active pull-up 10: 100 K active pull-down 11: 100 K active pull-up (default)

Table 74. GPIOLVx Control ⁽⁶¹⁾

Table 74. GPIOLVx Control (61)

SPI Bit	Description
	Slew rate enable
SRE[1:0]	00: slow (default)
	01: normal
	10: fast
	11: very fast

Notes

61. x= 0, 1, 2, or 3 depending of the GPIO channel it is being used

7.7.2 PWM Outputs

There are two PWM outputs on the 34709 PWM1 and PWM2 and which are controlled by the PWMxDUTY and PWMxCLKDIV registers shown in <u>Table 75</u>. The base clock will be the 2.0 MHz divided by 32.

PWMxDC[5:0](⁽⁶²⁾)	Duty Cycle
000000	0/32, Off (default)
000001	1/32
010000	16/32
011111	31/32
1xxxxx	32/32, Continuously On

Table 75. PWMx Duty Cycle Programming

Notes

62. "x" represent 1 and 2

32.768 kHz Crystal Oscillator RTC Block Description and Application Information

PWMxCLKDIV[5:0](⁽⁶³⁾)	Duty Cycle
000000	Base Clock
000001	Base Clock / 2
001111	Base Clock / 16
111111	Base Clock / 64

Notes

63. "x" represent 1 and 2

7.8 Serial Interfaces

The IC contains a number of programmable registers for control and communication. The majority of registers are accessed through a SPI interface in a typical application. The same register set may alternatively be accessed with an I^2C interface that is muxed on SPI pins. <u>Table 77</u> describes the muxed pin options for the SPI and I^2C interfaces; further details for each interface mode follow.

Pin Name	SPI Mode Functionality	I ² C Mode Functionality
CS	Configuration ⁽⁶⁴⁾ , Chip Select	Configuration ⁽⁶⁵⁾
CLK	SPI Clock	SCL: I ² C bus clock
MISO	Master In, Slave Out (data output)	SDA: Bi-directional serial data line
MOSI	Master Out, Slave In (data input)	A0 Address selection ⁽⁶⁶⁾

Notes

- 64. CS held low at Cold Start, configures the interface for SPI mode; once activated, CS functions as the SPI Chip Select.
- 65. CS tied to VCOREDIG at Cold Start, configures the interface for I^2C mode; the pin is not used in I^2C mode, other than for configuration.
- 66. In I²C mode, the MOSI pin is hardwired to ground, or VCOREDIG is used to select between two possible addresses.

7.8.1 SPI Interface

The SPI interface port allows access by a processor to the register set. Via these registers the resources of the IC can be controlled. The registers also provide status information about how the IC is operating, as well as information on external signals.

Because the SPI interface pins can be reconfigured for reuse as an I^2C interface, a configuration protocol mandates that the CS pin is held low during a turn on event for the IC (a weak pull-down is integrated on the CS pin). The state of CS is latched in during the initialization phase of a Cold Start sequence, ensuring that the I^2C bus is configured before the interface is activated. With the CS pin held low during start-up (as would be the case if connected to the CS driver of an unpowered processor due to the integrated pull-down), then the bus configuration will be latched for SPI mode.

The SPI port utilizes 32-bit serial data words comprised of 1 write/read_b bit, 6 address bits, 1 null bit, and 24 data bits. The addressable register map spans 64 registers of 24 data bits each. The map is not fully populated, but it follows the legacy conventions for bit positions corresponding to common functionality with previous generation FSL products.

7.8.1.1 SPI Interface Description

For a SPI read, the first bit sent to the IC must be a zero indicating a SPI read cycle. Next, the six bit address is sent MSB first. This is followed by one dead bit to allow for more address decode time. The 34709 will clock the above bits in on the rising edge of the SPI clock. Then the 24 data bits are driven out on the MISO pin on the falling edge of the SPI clock so the master can clock them in on the rising edge of the SPI clock.

For each MOSI SPI transfer, first a one is written to the write/read_b bit if this SPI transfer is to be a write. A zero is written to the write/read_b bit if this is to be a read command. If a zero is written, then any data sent after the address bits are ignored and the internal contents of the field addressed do not change when the 32nd CLK is sent.

For a SPI write the first bit sent to the 34709 must be a one indicating a SPI write cycle. Next the six bit address is sent MSB first. This is followed by one dead bit to allow for more address decode time. Then the data is sent MSB first. The SPI data is written to the SPI register whose address was sent at the start of the SPI cycle on the falling edge of the 32nd SPI clock. Additionally, whenever a SPI write cycle is taking place the SPI read data is shifted out for the same address as for the write cycle. Next the 6-bit address is written, MSB first. Finally, data bits are written, MSB first. Once all the data bits are written then the data is transferred into the actual registers on the falling edge of the 32nd CLK.

The CS polarity is active high. The CS line must remain high during the entire SPI transfer. For a write sequence it is possible for the written data to be corrupted, if after the falling edge of the 32nd clock the CS goes low before it's required time. CS can go low before this point and the SPI transaction will be ignored, but after that point the write process is started and cannot be stopped because the write strobe pulse is already being generated and CS going low may cause a runt pulse that may or may not be wide

enough to clock all 24 data bits properly. To start a new SPI transfer, the CS line must be toggled low and then pulled high again. The MISO line will be tri-stated while CS is low.

The register map includes bits that are read/write, read only, read/write "1" to clear (i.e., Interrupts), and clear on read, reserved, and unused. Refer to the SPI/I2C Register Map and the individual subcircuit descriptions to determine the read/write capability of each bit. All unused SPI bits in each register must be written to as zeroes. A SPI read back of the address field and unused bits are returned as zeroes. To read a field of data, the MISO pin will output the data field pointed to by the 6 address bits loaded at the beginning of the SPI sequence.

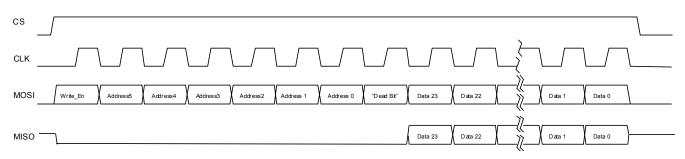


Figure 19. SPI Transfer Protocol Single Read/Write Access

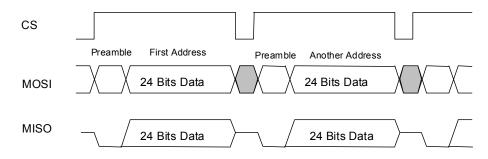


Figure 20. SPI Transfer Protocol Multiple Read/Write Access

7.8.1.2 SPI Timing Requirements

Figure 21 and Table 78 summarize the SPI timing requirements. The SPI input and output levels are set via the SPIVCC pin, by connecting it to the desired supply. This would typically be tied to SW5 and programmed for 1.80 V. The strength of the MISO driver is programmable through the SPIDRV [1:0] bits. See Table 79 for detailed SPI electrical characteristics.

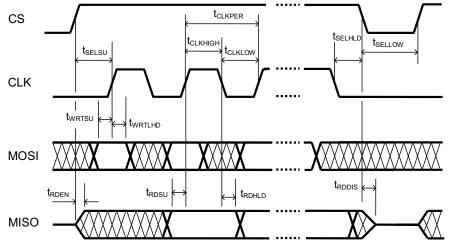


Figure 21. SPI Interface Timing Diagram

Parameter	Description	t _{MIN} (ns)
t _{SELSU}	Time CS has to be high before the first rising edge of CLK	15
t _{SELHLD}	Time CS has to remain high after the last falling edge of CLK	15
t _{SELLOW}	Time CS has to remain low between two transfers	15
t _{CLKPER}	Clock period of CLK	38
t _{CLKHIGH}	Part of the clock period where CLK has to remain high	15
t _{CLKLOW}	Part of the clock period where CLK has to remain low	15
t _{WRTSU}	Time MOSI has to be stable before the next rising edge of CLK	4.0
t _{WRTHLD}	Time MOSI has to remain stable after the rising edge of CLK	4.0
t _{RDSU}	Time MISO will be stable before the next rising edge of CLK	4.0
t _{RDHLD}	Time MISO will remain stable after the falling edge of CLK	4.0
t _{RDEN}	Time MISO needs to become active after the rising edge of CS	4.0
t _{RDDIS}	Time MISO needs to become inactive after the falling edge of CS	4.0

Table 78. SPI Interface Timing Specifications⁽⁶⁷⁾

Notes

67. This table reflects a maximum SPI clock frequency of 26 MHz.

7.8.2 I²C Interface

7.8.2.1 I²C Configuration

When configured for I²C mode, the interface may be used to access the complete register map previously described for SPI access. Since SPI configuration is more typical, references within this document will generally refer to the common register set as a "SPI map" and bits as "SPI bits"; however, it should be understood that access reverts to I²C mode when configured as such.

The SPI pins CLK and MISO are reused for the SCL and SDA lines respectively. Selection of I^2C mode for the interface is configured by hard-wiring the CS pin to VCOREDIG on the application board. The state of CS is latched during the initialization phase of a Cold Start sequence, so the CS bit is defined for bus configuration before the interface is activated. The pull-down on CS will be deactivated if the high state is detected (indicating I^2C mode).

In I^2C mode, the MISO pin is connected to the bus as an open-drain driver, and the logic level is set by an external pull-up. The part can function only as an I^2C slave device, not as a host.

7.8.2.2 I²C Device ID

I²C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for bus conflict avoidance, pin programmable selection is provided to allow configuration for the address LSB(s). This product supports 7-bit addressing only; support is not provided for 10-bit or general Call addressing.

Because the MOSI pin is not utilized for I²C communication, it is reassigned for pin programmable address selection by hardwiring to VCOREDIG or GND at the board level when configured for I²C mode. MOSI will act as Bit 0 of the address. The I²C address assigned to FSL PM ICs (shared amongst our portfolio) is given as follows:

00010-A1-A0, the A1 and A0 bits are allowed to be configured for either 1 or 0. The A1 address bit is internally hardwired as a "0", leaving the LSB A0 for board level configuration. The designated address then is defined as: 000100-A0.

7.8.2.3 I²C Operation

The I²C mode of the interface is implemented generally following the Fast Mode definition which supports up to 400 kbits/s operation. (Exceptions to the standard are noted to be 7-bit only addressing, and no support for general Call addressing) Timing diagrams, electrical specifications, and further details on this bus standard, is available on the internet, by typing "I²C specification" in the web search string field.

Standard I²C protocol utilizes bytes of eight bits, with an acknowledge bit (ACK) required between each byte. However, the number of bytes per transfer is unrestricted. The register map is organized in 24-bit registers which corresponds to the 24-bit words supported by the SPI protocol of this product. To ensure that I²C operation mimics SPI transactions in behavior of a complete 24-bit word being written in one transaction, software is expected to perform write transactions to the device in 3-byte sequences, beginning with the MSB. Internally, data latching will be gated by the acknowledge at the completion of writing the third consecutive byte.

Failure to complete a 3-byte write sequence will abort the l^2C transaction and the register will retain its previous value. This could be due to a premature STOP command from the master, for example.

I²C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and 3-bytes will be sent out unless a STOP command or NACK is received prior to completion.

The following examples show how to write and read data to the IC. The host initiates and terminates all communication. The host sends a master command packet after driving the start condition. The device will respond to the host if the master command packet contains the corresponding slave address. In the following examples, the device is shown always responding with an ACK to transmissions from the host. If at any time a NAK is received, the host should terminate the current transaction and retry the transaction.

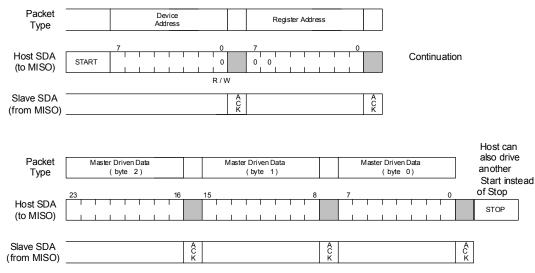


Figure 22. I²C 3-byte Write Example

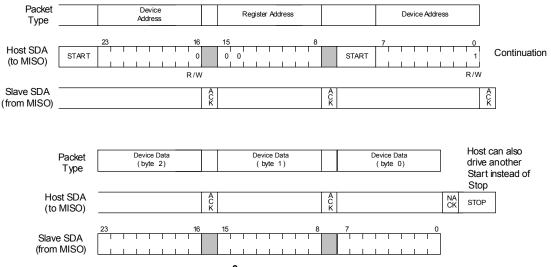


Figure 23. I²C 3-byte Read Example

7.8.3 SPI/I²C Specification

Table 79. SPI/I²C Electrical Characteristics

Characteristics noted under conditions BP = 3.6 V, -40 °C \leq T_A \leq 85 °C, unless otherwise noted. Typical values at BP = 3.6 V and T_A = 25 °C under nominal conditions, unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
SPI Interface	Logic IO					
V _{INCSLO}	Input Low CS	0.0	-	0.4	V	
V _{INCSHI}	Input High CS	1.1	-	SPIVCC+0.3	V	
V _{INMOSILO} / V _{INCLKLO}	Input Low, MOSI, CLK	0.0	-	0.3*SPIVCC	V	
V _{INMOSIHI} / V _{INCLKHI}	Input High, MOSI, CLK	0.7*SPIVCC	-	SPIVCC+0.3	V	
V _{MISOLO} / V _{INTLO}	Output Low MISO, INT • Output sink 100 μA	0.0	-	0.2	V	
V _{MISOHI} / V _{INTHI}	Output High MISO, INT • Output source 100 μA	SPIVCC-0.2	-	SPIVCC	V	
V _{CC-SPI}	SPIVCC Operating Range	1.75	-	3.6	V	
t _{MISOET}	MISO Rise and Fall Time, CL = 50 pF, SPIVCC = 1.8 V • SPIDRV [1:0] = 00 • SPIDRV [1:0] = 01 (default) • SPIDRV [1:0] = 10 • SPIDRV [1:0] = 11		6.0 2.5 3.0 2.0		ns	

7.9 Configuration Registers

7.9.1 Register Set structure

The general structure of the register set is given in <u>Table 80</u>. Expanded bit descriptions are included in the following functional sections for application guidance. For brevity's sake, references are occasionally made herein to the register set as the "SPI map" or "SPI bits", but note that bit access is also possible through the I²C interface option so such references are implied as generically applicable to the register set accessible by either interface.

	Register		Register		Register		Register
0	Interrupt Status 0	16	Memory A	32	Regulator Mode 0	48	ADC5
1	Interrupt Mask 0	17	Memory B	33	GPIOLV0 Control	49	ADC6
2	Interrupt Sense 0	18	Memory C	34	GPIOLV1 Control	50	ADC7
3	Interrupt Status 1	19	Memory D	35	GPIOLV2 Control	51	Reserved
4	Interrupt Mask 1	20	RTC Time	36	GPIOLV3 Control	52	Supply Debounce
5	Interrupt Sense 1	21	RTC Alarm	37	Reserved	53	Reserved
6	Power Up Mode Sense	22	RTC Day	38	Reserved	54	Reserved
7	Identification	23	RTC Day Alarm	39	Reserved	55	PWM Control
8	Regulator Fault Sense	24	Regulator 1 A/B Voltage	40	Reserved	56	Unused
9	Reserved	25	Regulator 2 & 3 Voltage	41	Unused	57	Unused
10	Reserved	26	Regulator 4 A/B Voltage	42	Unused	58	Unused
11	Reserved	27	Regulator 5 Voltage	43	ADC 0	59	Unused
12	Unused	28	Regulator 1 & 2 Mode	44	ADC 1	60	Unused
13	Power Control 0	29	Regulator 3, 4 and 5 Mode	45	ADC 2	61	Unused
14	Power Control 1	30	Regulator Setting 0	46	ADC 3	62	Unused
15	Power Control 2	31	SWBST Control	47	ADC4	63	Unused

Table 80. Register Set

7.9.2 Specific Registers

7.9.2.1 IC and Version Identification

The IC and other version details can be read via the identification bits. These are hardwired on the chip and described in Table 81.

Identifier	Value	Purpose
FULL_LAYER_REV[2:0]	xxx	Represents the full mask revision Pass 1.0 = 001
METAL_LAYER_REV[2:0]	xxx	Represents the full Metal revision Pass 1.1 = 001 Pass 1.2 = 010
FIN[2:0]	000	Options within same Reticle Pass 1.0 = 000
FAB[2:0]	000	Wafer manufacturing facility Pass 1.0 = 000

Table 81. IC Revision Bit Assignment

7.9.2.2 Embedded Memory

There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[23:0], MEMB[23:0], MEMC[23:0], and MEMD[23:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or contact-bounced (i.e., during a power cut). The contents of the embedded memory are reset by RTCPORB. A known pattern can be maintained in these registers to validate confidence in the RTC contents when power is restored after a power cut event. Alternatively, the banks can be used for any system need for bit retention with coin cell backup.

7.9.3 SPI/I²C Register Map

The complete SPI bitmap is given in Table 82.

Table 82. SPI/I²C Register Map

	Register Types	Register Values	Reset
R/W	Read / Write	0 = low	Bits Loaded at Cold Start based on PUMS Value
R/WM	Read / Write Modify	1 = High	Bits Reset by POR or Global Reset
W1C	Write One to Clear	X = Variable	RESETB / Green Reset Bits Reset by POR or Global or Green Reset
RO	Read Only		Bits Reset by RTCPORB or Global Reset
NU	Not Used		Bits Reset by POR or OFFB
			Bits Reset by RTCPORB Only

Address	Register Name	Туре	Default			347	'09 SPI Regi	ster Map Re	v 0.1					
				23	22	21	20	19	18	17	16			
				-	-	-	-	-	-	-	-			
0.00	Interrupt Status 0			15	14	13	12	11	10	9	8			
0x00	Table 83	W1C	h00_00_00	-	-	LOWBATT	-	-	-	-	-			
				7	6	5	4	3	2	1	0			
				-	-	-	-	-	TSPENDET	TSDONEI	ADCDONEI			
				23	22	21	20	19	18	17	16			
				-	-	-	-	-	-	-	-			
0.04	Interrupt Mask 0			15	14	13	12	11	10	9	8			
0x01	Table 84	R/W	h00_20_07	-	-	LOWBATTM	-	-	-	-	-			
				7	6	5	4	3	2	1	0			
				-	-	-	-	-	TSPENDETM	TSDONEM	ADCDONEM			
				23	22	21	20	19	18	17	16			
				-	-	-	-	-	-	-	-			
0.00	Reserved			15	14	13	12	11	10	9	8			
0x02	Table 85	NU	h00_00_00	-	-	-	-	-	-	-	-			
				7	6	5	4	3	2	1	0			
				-	-	-	-	-	-	-	-			
				23	22	21	20	19	18	17	16			
				-	BATTDETBI	-	GPIOLV3I	GPIOLV2I	GPIOLV1I	GPIOLV0I	SCPI			
000	Interrupt Status 1	tatus 1 W1C	status 1 W1C	h40 00 00	15	14	13	12	11	10	9	8		
0x03	Table 86					h40_80_80	CLKI	THERM130	THERM125	THERM120	THERM110	MEMHLDI	WARMI	PCI
						7	6	5	4	3	2	1	0	
				RTCRSTI	SYSRSTI	WDIRESTI	PWRON2I	PWRON1I	-	TODAI	1HZI			
				23	22	21	20	19	18	17	16			
				-	BATTDETBIM	-	GPIOLV3M	GPIOLV2M	GPIOLV1M	GPIOLV0M	SCPM			
0x04	Interrupt Mask 1	R/W	h5F_FF_FB	15	14	13	12	11	10	9	8			
UXU4	Table 87	R/W		CLKM	THERM130M	THERM125M	THERM120M	THERM110M	MEMHLDM	WARMM	PCM			
				7	6	5	4	3	2	1	0			
				RTCRSTM	SYSRSTM	WDIRESTM	PWRON2M	PWRON1M	-	TODAM	1HZM			

				23	22	21	20	19	18	17	16
				-	-	-	GPIOLV3S	GPIOLV2S	GPIOLV1S	GPIOLV0S	-
	Interrupt			15	14	13	12	11	10	9	8
0x05	Sense 1	RO	hXX_XX_XX	CLKS	THERM130S	THERM125S	THERM120S	THERM110S	-	-	-
	Table 88			7	6	5	4	3	2	- 1	0
				-	-	-	PWRON2S	PWRON1S	-	-	-
_				23	22	21	20	19	- 18	- 17	- 16
				-	-	-	-	-	-	-	-
	Power Up			15	14	13	12	11	10	9	8
0x06	Mode Sense	RO	RO h00_00_XX	-		-			-	-	-
	Table 89			7	6	5	4	3	2	1	0
				-	-	PUMS5S	PUMS4S	PUMS3S	PUMS2S	PUMS1S	ICTESTS
				23	22	21	20	19	18	17	16
				23		PAGE[4:0]	20	15	-	-	-
				15	14	13	12	11	10	9	8
0x07	Identification Table 90	RO	h00_0X_XX		-	-			FAB[2:0]		FIN[2]
				7	6	5	4	3	2	1	0
				FIN[-	L_LAYER_REV			AL LAYER REV	-
				23	22	21	20	19	18	17	16
				REGSCPEN				-	-	-	-
	Regulator			15	14	13	12	11	10	9	8
0x08	Fault Sense	R0	h00_XX_XX		-	-	VGEN2FAULT	VGEN1FAULT	VDACFAULT	VUSB2FAULT	VUSBFAULT
	Table 91			7	6	5	4	3	2	1	0
				SWBSTFAULT	SW5FAULT	SW4BFAULT	SW4AFAULT	SW3FAULT	SW2FAULT	RSVD	SW1FAULT
				23	22	21	20	19	18	17	16
				-							
				-	-	-	-	-	-	-	-
0x09					- 14	- 13			- 10	- 9	- 8
0x09 To	Unused	NU	h00_00_00	- 15	- 14	13	- 12	- 11	- 10	- 9	- 8
	Unused	NU	h00_00_00	- 15	-	13 -	12 -	-	10 -	9	8
То	Unused	NU	h00_00_00	15	14	13	12	11	10	9	8
То	Unused	NU	h00_00_00	15 - 7	14 - 6	13 - 5	12 - 4	11 - 3	10 - 2	9 - 1	8 - 0
То	Unused	NU	h00_00_00	15 - 7 -	14 - 6 -	13 - 5 - 21	12 - 4 -	11 - 3 -	10 - 2 -	9 - 1 -	8 - 0 -
То	Unused	NU	h00_00_00	15 - 7 - 23	14 - 6 -	13 - 5 -	12 - 4 -	11 - 3 - 19	10 - 2 - 18	9 - 1 - 17	8 - 0 - 16
То	Power Control 0	NU	h00_00_00	15 - 7 - 23 COINCHEN	14 - 6 - 22	13 - 5 - 21 VCOIN[2:0]	12 - 4 - 20	11 - 3 - 19 -	10 - 2 - 18 -	9 - 1 - 17 - 9	8 - - - 16 -
To 0x0C	Power			15 - 7 - 23 <u>COINCHEN</u> 15	14 - 6 - 22 14	13 - 5 - 21 VCOIN[2:0] 13	12 - 4 - 20 12	11 - 3 - 19 - 11	10 - 2 - 18 - 10	9 - 1 - 17 -	8 - - - 16 - 8
To 0x0C	Power Control 0			15 - 7 - 23 COINCHEN 15 -	14 - 6 - 22 - 14 -	13 - 5 - 21 VCOIN[2:0] 13 - 5	12 - 4 - 20 12 -	11 - 3 - 19 - 11 -	10 - 2 - 18 - 10 -	9 - 1 - 17 - 9 PCUTEXPB 1	8 - - - 16 - 8 -
To 0x0C	Power Control 0			15 - 7 - 23 COINCHEN 15 - 7	14 - 6 - 22 - 14 - 6	13 - 5 - 21 VCOIN[2:0] 13 - 5	12 - 4 - 20 12 - 4	11 - - - 19 - - 11 - 3	10 - 2 - 18 - 10 - 2	9 - 1 - 17 - 9 PCUTEXPB	8 - - - 16 - 8 - 8 - 0
To 0x0C	Power Control 0			15 - 7 - 23 COINCHEN 15 - 7 - 7	14 - 6 - 22 14 - 6 CLK32KMCUEN	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK	12 - 4 - 20 12 - 4 DRM	11 - 3 - 19 - 11 - 3 USEROFFSPI	10 - 2 - 18 - 10 - 2 WARMEN	9 - 1 - 17 - 9 PCUTEXPB 1 PCCOUNTEN	8 - 0 - 16 - 8 - 8 - 0 PCEN
To 0x0C	Power Control 0 <u>Table 94</u> Power	R/W	h00_00_40	15 - 7 - 23 COINCHEN 15 - 7 - 23 23	14 - 6 - 22 14 - 6 CLK32KMCUEN 22	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21	12 - 4 - 20 12 - 4 DRM 20	11 - 3 - 19 - 11 - 3 USEROFFSPI 19	10 - 2 - 18 - 10 - 2 WARMEN 18	9 - 1 - 17 - 9 PCUTEXPB 1 PCCOUNTEN 17	8 - 0 - 16 - 8 - 0 PCEN 16
To 0x0C	Power Control 0 <u>Table 94</u> Power Control 1	R/W		15 - 7 - 23 COINCHEN 15 - 7 - 7 - 23 -	14 - 6 - 22 - 14 - 6 CLK32KMCUEN 22 -	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21 - 13	12 - 4 - 20 12 - 4 DRM 20 -	11 - 3 - 19 - 11 - 3 USEROFFSPI 19 -	10 - 2 - 18 - 10 - 2 WARMEN 18 - 10	9 - 1 - 17 - 9 PCUTEXPB 1 PCCOUNTEN 17 -	8 - 0 - 16 - 8 - 0 PCEN 16 -
To 0x0C	Power Control 0 <u>Table 94</u> Power	R/W	h00_00_40	15 - 7 - 23 COINCHEN 15 - 7 - 7 - 23 -	14 - 6 - 22 - 14 - 6 CLK32KMCUEN 22 - 14	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21 - 13	12 - 4 - 20 12 - 4 DRM 20 -	11 - 3 - 19 - 11 - 3 USEROFFSPI 19 -	10 - 2 - 18 - 10 - 2 WARMEN 18 - 10	9 - 1 - 7 - 9 PCUTEXPB 1 PCCOUNTEN 17 - 9	8 - 0 - 16 - 8 - 0 PCEN 16 -
To 0x0C	Power Control 0 <u>Table 94</u> Power Control 1	R/W	h00_00_40	15 - 7 - 23 COINCHEN 15 - 7 - 23 - 15	14 - 6 - 22 14 - 6 CLK32KMCUEN 22 - 14 PCMAXC	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21 - 13 NT[3:0]	12 - 4 - 20 12 - 4 DRM 20 - 12 12	11 - 3 - 19 - 11 - 3 USEROFFSPI 19 - 11	10 - 2 - 18 - 10 - 2 WARMEN 18 - 10 PCCO	9 - 1 - 7 - 9 PCUTEXPB 1 PCCOUNTEN 17 - 9 9 UNT[3:0]	8 - 0 - 16 - 8 - 0 PCEN 16 - 8 8
To 0x0C	Power Control 0 <u>Table 94</u> Power Control 1	R/W	h00_00_40	15 - 7 - 23 COINCHEN 15 - 7 - 23 - 15	14 - 6 - 22 14 - 6 CLK32KMCUEN 22 - 14 PCMAXC	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21 - 13 NT[3:0]	12 - 4 - 20 12 - 4 DRM 20 - 12 12	11 - 3 - 19 - 11 - 3 USEROFFSPI 19 - 11 3 3	10 - 2 - 18 - 10 - 2 WARMEN 18 - 10 PCCO	9 - 1 - 7 - 9 PCUTEXPB 1 PCCOUNTEN 17 - 9 9 UNT[3:0]	8 - 0 - 16 - 8 - 0 PCEN 16 - 8 8
To 0x0C	Power Control 0 <u>Table 94</u> Power Control 1	R/W	h00_00_40	15 - 7 - 23 COINCHEN 15 - 7 - 23 - 15 - 7 7 7 7 7 7 7 7 7 7 7 7 7	14 - 6 - 22 14 - 6 CLK32KMCUEN 22 - 14 PCMAXC 6 22	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21 - 13 NT[3:0] 5	12 - 4 - 20 12 - 4 DRM 20 - 12 12 4 PC	11 - 3 - 19 - 11 - 3 USEROFFSPI 19 - 11 - 11 3 T[7:0]	10 - 2 - 18 - 10 - 2 WARMEN 18 - 10 PCCO 2	9 - 1 17 - 9 9 PCUTEXPB 1 PCCOUNTEN 17 - 9 9 UNT[3:0] 1 1	8 - 0 - 16 - 8 - 0 PCEN 16 - 8 8
To 0x0C 0x0D 0x0E	Power Control 0 Table 94 Power Control 1 Table 95 Power	R/W R/W	h00_00_40	15 - 7 - 23 COINCHEN 15 - 7 - 23 - 15 7 23 7 23 23	14 - 6 - 22 14 - 6 CLK32KMCUEN 22 - 14 PCMAXC 6 22	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21 - 13 NT[3:0] 5 5	12 - 4 - 20 12 - 4 DRM 20 - 12 12 4 PC 20	11 - - - - - - - - - - - - - - - - - -	10 - 2 - 18 - 10 - 2 WARMEN 18 - 10 PCCO 2 2	9 - 1 17 - 9 9 PCUTEXPB 1 PCCOUNTEN 17 - 9 9 UNT[3:0] 1 1	8 - 0 - 16 - 8 - 0 PCEN 16 - 8 8 0 -
To 0x0C	Power Control 0 Table 94 Power Control 1 Table 95 Power Control 2	R/W R/W	h00_00_40	15 - 7 - 23 COINCHEN 15 - 7 - 23 - 15 7 23 - 15 23 - 25 - - - - - - - - - - - - -	14 - 6 - 22 14 - 6 CLK32KMCUEN 22 - 14 PCMAXC 6 22 LY[1:0]	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21 - 13 NT[3:0] 5 21 ON_STBY_LP 13	12 - 4 - 20 12 - 4 20 - 12 20 - 12 4 PC 20 -	11 - 3 - 19 - 11 - 3 USEROFFSPI 19 - 11 3 T[7:0] 19 - 19 -	10 - 2 - 18 - 10 - 2 WARMEN 18 - 10 PCCO 2 18 - 10 - 10 - 10 - - - 10 - - - - - - - -	9 - 1 17 - 9 9 PCUTEXPB 1 17 - 9 9 UNT[3:0] 1 1 2 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 - 0 - 16 - 8 - 0 PCEN 16 - 8 - 8 - 0 - 16 - 8 - 8 - - 8 - - - 8 - - - - 8 -
To 0x0C 0x0D 0x0E	Power Control 0 Table 94 Power Control 1 Table 95 Power	R/W R/W	h00_00_40	15 - 7 - 23 COINCHEN 15 - 7 - 23 - 15 7 23 - 15 23 5 TBYDI 15	14 - 6 - 22 14 - 6 CLK32KMCUEN 22 - 14 PCMAXC 6 22 LY[1:0] 14	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21 - 13 NT[3:0] 5 21 ON_STBY_LP 13	12 - 4 - 20 12 - 4 DRM 20 - 12 20 - 12 20 - 12	11 - 3 - 19 - 11 - 3 USEROFFSPI 19 - 11 3 T[7:0] 19 - 11 11 - 11 - 11 - 11 - 11 - - 11 - - - - - - - - - - - - -	10 - 2 - 18 - 10 - 2 WARMEN 18 - 10 PCCO 2 18 CLKDF 10	9 - 1 - 17 - 9 PCUTEXPB 1 PCCOUNTEN 17 - 9 UNT[3:0] 1 17 ₹V[1:0] 9	8 - 0 - 16 - 8 - 0 PCEN 16 - 8 - 8 - 0 - 16 - 8 - 8 - - 8 - - - 8 - - - - 8 -
To 0x0C 0x0D 0x0E	Power Control 0 Table 94 Power Control 1 Table 95 Power Control 2	R/W R/W	h00_00_40	15 - 7 - 23 COINCHEN 15 - 7 - 23 - 15 7 23 - 15 - 23 STBYDI 15 - - - 15 - - - - - - - - - - - - -	14 - 6 - 22 14 - 6 CLK32KMCUEN 22 - 14 PCMAXC 6 22 LY[1:0] 14 SPIDF 6	13 - 5 - 21 VCOIN[2:0] 13 - 5 USEROFFCLK 21 - 13 NT[3:0] 5 21 ON_STBY_LP 13 ×V[1:0] 5	12 - 4 - 20 12 - 4 DRM 20 - 12 20 - 12 20 - 12 20 - 12 20 - 12 WDIRESET	11 - - - - - - - - - - - - - - - - - -	10 - 2 - 18 - 10 - 2 WARMEN 2 WARMEN 18 - 10 PCCOU 2 10 2 110 10 5TANDBYINV	9 - 1 - 17 - 9 PCUTEXPB 1 PCCOUNTEN 17 - 9 UNT[3:0] 1 UNT[3:0] 1 17 ₹V[1:0] 9 GLBRST 1	8 - 0 - 16 - 8 - 0 PCEN 16 - 8 - 8 - 16 - 16 - 16 - - 8 - - - 8 - - - - - - - - - - - -

				23	22	21	20	19	18	17	16
								A[23:16]			
				15	14	13	12	11	10	9	8
0x10	Memory A Table 97	R/W	h00_00_00	15	14	15		A[15:8]	10	3	0
				7	6	5	4	3	2	1	0
				1	0	5			2	l	0
					00	01		1A[7:0]	40	47	40
				23	22	21	20	19	18	17	16
				45	- 44	40		3[23:16]	40		
0x11	Memory B Table 98	R/W	h00_00_00	15	14	13	12	11	10	9	8
	<u>1 able 90</u>							B[15:8]			
				7	6	5	4	3	2	1	0
								1B[7:0]			
				23	22	21	20	19	18	17	16
						1		C[23:16]			
0x12	Memory C	R/W	h00_00_00	15	14	13	12	11	10	9	8
	<u>Table 99</u>							C[15:8]			
				7	6	5	4	3	2	1	0
							MEN	IC[7:0]			
				23	22	21	20	19	18	17	16
							MEME	D[23:16]			
0x13	Memory D	R/W	h00_00_00	15	14	13	12	11	10	9	8
0x13	<u>Table 100</u>	R/W	100_00_00				MEM	D[15:8]			
				7	6	5	4	3	2	1	0
					•	•	MEM	ID[7:0]		•	•
				23	22	21	20	19	18	17	16
				RTCCALM	10DE[1:0]			RTCCAL[4:0]			TOD[16]
0.44	RTC Time	5.44		RTCCALM	10DE[1:0] 14	13	12	RTCCAL[4:0]	10	9	TOD[16]
0x14	RTC Time <u>Table 101</u>	R/W	h0X_XX_XX			13				9	
0x14		R/W	h0X_XX_XX			13		11		9	
0x14		R/W	h0X_XX_XX	15	14		TOD 4	11 [15:8]	10		8
0x14		R/W	h0X_XX_XX	15	14		TOD 4	11 0[15:8] 3	10		8
0x14		R/W	h0X_XX_XX	15 7	14 6	5	TOD 4 TOD	11 0[15:8] 3 0[7:0]	10 2	1	8
	<u>Table 101</u>			15 7 23	14 6 22	5	4 700 20	11 [15:8] 3 D[7:0] 19	10 2 18	1	8 0 16
0x14 0x15			h0X_XX_XX h01_FF_FF	15 7 23 RTCDIS	14 6 22 SPARE	5 21 SPARE	4 TOD 20 SPARE 12	11 [15:8] 3 0[7:0] 19 SPARE	10 2 18 SPARE	1 17 SPARE	8 0 16 TODA[16]
	Table 101 RTC Alarm			15 7 23 RTCDIS	14 6 22 SPARE	5 21 SPARE	4 TOD 20 SPARE 12	11 (15:8) 3 D[7:0] 19 SPARE 11	10 2 18 SPARE	1 17 SPARE	8 0 16 TODA[16]
	Table 101 RTC Alarm			15 7 23 RTCDIS 15	14 6 22 SPARE 14	5 21 SPARE 13	TOD 4 TOD 20 SPARE 12 TOD, 4	11 3 0[15:8] 5 0[7:0] 19 SPARE 11 4[15:8] 3	10 2 18 SPARE 10	1 17 SPARE 9	8 0 16 TODA[16] 8
	Table 101 RTC Alarm			15 7 23 RTCDIS 15	14 6 22 SPARE 14	5 21 SPARE 13	TOD 4 TOD 20 SPARE 12 TOD, 4	11 [15:8] 3 D[7:0] 19 SPARE 11 A[15:8]	10 2 18 SPARE 10	1 17 SPARE 9 1	8 0 16 TODA[16] 8
	Table 101 RTC Alarm			15 7 23 RTCDIS 15 7	14 6 22 SPARE 14 6	5 21 SPARE 13 5	4 TOD 20 SPARE 12 TOD/ 4 TOD	11 2(15:8) 3 2(7:0) 19 SPARE 11 A(15:8) 3 A(7:0)	10 2 18 SPARE 10 2	1 17 SPARE 9	8 0 16 TODA[16] 8 0
	Table 101 RTC Alarm Table 102	R/W	h01_FF_FF	15 7 23 RTCDIS 15 7 23 -	14 6 22 SPARE 14 6 22 -	5 21 SPARE 13 5 21 -	TOD 4 TOD 20 SPARE 12 TOD, 4 TOD 20 -	11 (15:8) 3 D(7:0) 19 SPARE 11 A(15:8) 3 A(7:0) 19 -	10 2 18 SPARE 10 2 2 18 -	1 17 SPARE 9 1 1 17	8 0 16 TODA[16] 8 0 0 16 -
	Table 101 RTC Alarm	R/W		15 7 23 RTCDIS 15 7 23	14 6 22 SPARE 14 6 22	5 21 SPARE 13 5 21	TOD 4 TOD 20 SPARE 12 TOD 4 TOD 20	11 2[15:8] 3 D[7:0] 19 SPARE 11 A[15:8] 3 A[7:0] 19 - 11	10 2 18 SPARE 10 2 2 18	1 17 SPARE 9 1 1	8 0 16 TODA[16] 8 0 16
0x15	Table 101 RTC Alarm Table 102 RTC Day	R/W	h01_FF_FF	15 7 23 RTCDIS 15 7 7 23 - 15 -	14 6 22 SPARE 14 6 22 - 14	5 21 SPARE 13 5 21 - 13	TOD 4 TOU 20 SPARE 12 TOD 4 TOD 20 - 12	11 2(15:8) 3 2(7:0) 19 SPARE 11 A(15:8) 3 A(7:0) 19 - 11 DAY[14:8]	10 2 18 SPARE 10 2 2 18 - 10	1 17 SPARE 9 1 1 17 - 9	8 0 16 TODA[16] 8 0 16 - 8
0x15	Table 101 RTC Alarm Table 102 RTC Day	R/W	h01_FF_FF	15 7 23 RTCDIS 15 7 23 - 23 - 15	14 6 22 SPARE 14 6 22 -	5 21 SPARE 13 5 21 -	TOD 4 TOD 20 SPARE 12 TOD, 4 TOD 20 - 12 12	11 (15:8) 3 D(7:0) 19 SPARE 11 A(15:8) 3 A(7:0) 19 - 19 - 11 DAY[14:8] 3	10 2 18 SPARE 10 2 2 18 -	1 17 SPARE 9 1 1 17	8 0 16 TODA[16] 8 0 0 16 -
0x15	Table 101 RTC Alarm Table 102 RTC Day	R/W	h01_FF_FF	15 7 23 RTCDIS 15 7 23 - 23 - 15 - 7 7	14 6 22 SPARE 14 6 22 - 14 22 - 14 6	5 21 SPARE 13 5 21 - 13 5	TOD 4 TOD 20 SPARE 12 TOD 4 TOD 20 - 12 12 4 A DA	11 (15:8) 3 (7:0) 19 SPARE 11 (11 (15:8) 3 (7:0) 19 - 10 (11 (12) (12) (12) (12) (12) (12) (12)	10 2 18 SPARE 10 2 2 18 - 10 2 10 2	1 17 SPARE 9 1 1 17 - 9 9	8 0 16 TODA[16] 8 0 16 - 8 8 0
0x15	Table 101 RTC Alarm Table 102 RTC Day	R/W	h01_FF_FF	15 7 23 RTCDIS 15 7 23 - 7 23 - 7 7 23	14 6 22 SPARE 14 6 22 - 14 6 14 6 22 22	5 21 SPARE 13 5 21 - 13 5 5 21	TOD 4 TOD 20 SPARE 12 TOD 4 TOD 20 - 12 12 4 COA 20 20 20 20 20 20 20 20 20 20 20 20 20	11 3 2[15:8] 3 2[7:0] 19 SPARE 11 4[15:8] 3 (A[7:0] 19 - 10 11 DAY[14:8] 3 (7:0] 19	10 2 18 SPARE 10 2 18 - 10 2 2 18 18	1 17 SPARE 9 1 1 17 - 9 9 1 1 17	8 0 16 TODA[16] 8 0 16 - 8 8 0 16
0x15	Table 101 RTC Alarm Table 102 RTC Day Table 103	R/W	h01_FF_FF	15 7 23 RTCDIS 15 7 23 - 7 7 7 23 - 7 23 - 7	14 6 22 SPARE 14 6 22 - 14 6 6 22 - 14 6 22 - 22 -	5 21 SPARE 13 5 21 - 13 5 21 - 21 -	TOD 4 TOD 20 SPARE 12 TOD 4 TOD 20 - 12 12 4 A DA 20 20 -	11 (15:8) 3 (7:0) 19 SPARE 11 (15:8) 3 (7:0) 19 - 11 DAY[14:8] 3 (7:0) 19 - 11 0AY[14:8] 3 (7:0) 19 - 11 0AY[14:8] 3 (7:0) 19 - 19 - 11 0 19 - 11 - 19 - 19 - 11 - 19 - - 19 - - 19 - - - 19 - - - - - - - - - - - - -	10 2 18 SPARE 10 2 2 18 - 10 2 2 18 2 18 -	1 17 SPARE 9 1 1 17 - 9 9 1 1 1 17 -	8 0 16 TODA[16] 8 0 16 - 8 8 0 16 - 16
0x15	Table 101 RTC Alarm Table 102 RTC Day Table 103 RTC Day Alarm	R/W R/W	h01_FF_FF	15 7 23 RTCDIS 15 7 23 - 7 23 - 7 7 23 - 7 23 - 7 15	14 6 22 SPARE 14 6 22 - 14 6 14 6 22 22	5 21 SPARE 13 5 21 - 13 5 5 21	TOD 4 TOD 20 SPARE 12 TOD 4 TOD 20 - 12 12 4 COA 20 20 20 20 20 20 20 20 20 20 20 20 20	11 (15:8) 3 D(7:0) 19 SPARE 11 (11 (15:8) (11) (15:8) (12) (10 2 18 SPARE 10 2 2 10 2 18 - 10 2 10 10 10	1 17 SPARE 9 1 1 17 - 9 9 1 1 17	8 0 16 TODA[16] 8 0 16 - 8 8 0 16
0x15 0x16	Table 101 RTC Alarm Table 102 RTC Day Table 103	R/W R/W	h01_FF_FF	15 7 23 RTCDIS 15 15 7 23 - 7 23 - 7 7 23 - 7 23 - 7 15 - 15 -	14 6 22 SPARE 14 6 22 - 14 22 - 14 6 22 - 14	5 21 SPARE 13 5 21 - 13 5 21 - 13	TOD 4 TOD 20 SPARE 12 TOD 4 TOD 20 - 12 12 4 DA 20 - 12 12	11 (15:8) 3 (7:0) 19 SPARE 11 (11 (15:8) 3 (7:0) 19 (11 (7:0) 19 1	10 2 18 SPARE 10 2 2 18 - 10 2 18 - 10	1 17 SPARE 9 1 1 17 - 9 9 1 1 17 - 9 9 9	8 0 16 TODA[16] 8 0 0 16 - 8 8 0 16 - 8 8
0x15 0x16	Table 101 RTC Alarm Table 102 RTC Day Table 103 RTC Day Alarm	R/W R/W	h01_FF_FF	15 7 23 RTCDIS 15 7 23 - 7 23 - 7 7 23 - 7 23 - 7 15	14 6 22 SPARE 14 6 22 - 14 6 6 22 - 14 6 22 - 22 -	5 21 SPARE 13 5 21 - 13 5 21 - 21 -	TOD 4 TOD 20 SPARE 12 TOD 4 TOD 20 - 12 4 DAN 20 - 12 12 12	11 (15:8) 3 D(7:0) 19 SPARE 11 (11 (15:8) (11) (15:8) (12) (10 2 18 SPARE 10 2 2 10 2 18 - 10 2 10 10 10	1 17 SPARE 9 1 1 17 - 9 9 1 1 1 17 -	8 0 16 TODA[16] 8 0 16 - 8 8 0 16 - 16

				23	22	21	20	19	18	17	16
						RSVE)[5:0]			RSV	D[5:4]
	Regulator			15	14	13	12	11	10	9	8
0x18	1A/B Voltage Table 105	R/WM	hXX_XX_XX		RSVD	[3:0]			SW1AS	STBY[5:2]	
	14510 100			7	6	5	4	3	2	1	0
				SW1AST	BY[1:0]			SW	/1A[5:0]		
_				23	22	21	20	19	18	17	16
				-			SW3STBY[4:0]			-	SW3[4]
	Regulator			15	14	13	12	11	10	9	8
0x19	2&3 Voltage Table 106	R/WM	hXX_XX_XX		SW3[TBY[5:2]	
				7	6	5	4	3	2	1	0
				SW2STI					 V2[5:0]		
_				23	22	21	20	19	18	17	16
				SW4BH		21	20	SW4BSTBY[4:0		17	SW4B[4]
	Regulator 4			15	14	13	12	11		9	8
0x1A	Voltage	R/WM	hXX_XX_XX				12				
	<u>Table 107</u>				SW4B				AHI[1:0]		TBY[4:3]
				7	6	5	4	3	2	1	0
					SW4ASTBY[2:0]			10	SW4A[4:0]		10
				23	22	21	20	19	18	17	16
				-	-	-	-	-	-	-	-
0x1B	Regulator 5 Voltage	R/WM		15	14	13	12	11	10	9	8
	Table 108			-			SW5TBY[4:0]			-	-
				7	6	5	4	3	2	1	0
				-	-	-			SW5[4:0]		
				23	22	21	20	19	18	17	16
				-				10		••	10
				PLLX	PLLEN	SW2DVSS		SW2UOMODE	SW2MHMODE		DDE[3:2]
0x1C	Regulator 1. 2 Mode	R/WM	h52 80 48								
0x1C	Regulator 1, 2 Mode <u>Table 109</u>	R/WM	h52_80_48	PLLX	PLLEN 14	SW2DVSS	PEED[1:0]	SW2UOMODE	SW2MHMODE	SW2M0	DDE[3:2]
0x1C	1, 2 Mode	R/WM	h52_80_48	PLLX 15	PLLEN 14	SW2DVSS 13	PEED[1:0] 12	SW2UOMODE 11	SW2MHMODE 10	SW2M0	DDE[3:2] 8
0x1C	1, 2 Mode	R/WM	h52_80_48	PLLX 15 SW2MO	PLLEN 14 DE[1:0] 6	SW2DVSS 13 -	PEED[1:0] 12 - 4	SW2UOMODE 11 -	SW2MHMODE 10 - 2	SW2M0 9 -	DDE[3:2] 8 -
0x1C	1, 2 Mode	R/WM	h52_80_48	PLLX 15 SW2MO 7	PLLEN 14 DE[1:0] 6	SW2DVSS 13 - 5	PEED[1:0] 12 - 4	SW2UOMODE 11 -	SW2MHMODE 10 - 2	SW2MC 9 - 1	DDE[3:2] 8 -
0x1C	1, 2 Mode	R/WM	h52_80_48	PLLX 15 SW2MO 7 SW1DVSSI	PLLEN 14 DE[1:0] 6 PEED[1:0]	SW2DVSS 13 - 5 SW1AUOMODE	PEED[1:0] 12 - 4 SW1AMHMODE 20	SW2UOMODE 11 - 3	SW2MHMODE 10 - 2 SW1AM	9 - 1 10DE[3:0]	DDE[3:2] 8 - 0
	1, 2 Mode Table 109 Regulator			PLLX 15 SW2MO 7 SW1DVSSI 23	PLLEN 14 DE[1:0] 6 PEED[1:0] 22	SW2DVSS 13 - 5 SW1AUOMODE	PEED[1:0] 12 - 4 SW1AMHMODE 20	SW2UOMODE 11 - 3 - 19	SW2MHMODE 10 - 2 SW1AM	SW2MC 9 - 1 NODE[3:0] 17	DDE[3:2] 8 - 0 16
0x1C 0x1D	1, 2 Mode <u>Table 109</u>		h52_80_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE	SW2DVSS 13 - 5 SW1AUOMODE 21 13	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12	SW2UOMODE 11 - 3 19 ODE[3:0] 11	SW2MHMODE 10 - 2 SW1AM 18	SW2MC 9 - 1 MODE[3:0] 17 SW4BUOMODE 9	DDE[3:2] 8 - 0 16 SW4BMHMODE
	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode			PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14	SW2DVSS 13 - 5 SW1AUOMODE 21 13	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12	SW2UOMODE 11 - 3 19 ODE[3:0] 11	SW2MHMODE 10 - 2 SW1AM 18 10	SW2MC 9 - 1 MODE[3:0] 17 SW4BUOMODE 9	DDE[3:2] 8 - 0 16 SW4BMHMODE 8
	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode			PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0]	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE	SW2MHMODE 10 - 2 SW1AM 18 10 SW4AMHMODE 2	SW2M0 9 - 10DE[3:0] 17 SW4BUOMODE 9 SW4AM	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2]
	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode			PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE	SW2MHMODE 10 - 2 SW1AM 18 10 SW4AMHMODE 2	SW2MC 9 - 10DE[3:0] 17 SW4BUOMODE 9 SW4AM 1	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2]
	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode			PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMO	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DDE[1:0]	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3	SW2MHMODE 10 - 2 SW1AM 18 10 SW4AMHMODE 2 SW3AM	SW2MC 9 - 10DE[3:0] 17 SW4BUOMODE 9 SW4AM 1 ODE[3:0]	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0
0x1D	1, 2 Mode <u>Table 109</u> Regulator 3, 4, 5 Mode <u>Table 110</u> Regulator	R/WM	h52_08_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DDE[1:0] 22	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3 19	SW2MHMODE 10 - 2 SW1AM 18 10 SW4AMHMODE 2 SW3M 18	SW2MC 9 - 1 MODE[3:0] 17 SW4BUOMODE 9 SW4AM 1 ODE[3:0] 17	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16
	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode Table 110	R/WM		PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23 -	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DDE[1:0] 22 -	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21 -	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20 - 12	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3 19 -	SW2MHMODE 10 - 2 SW1AM 18 10 SW4AMHMODE 2 SW3M 18 - 10	SW2MC 9 - 10DE[3:0] 17 SW4BUOMODE 9 SW4AM 1 0DE[3:0] 17 -	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 -
0x1D	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode Table 110 Regulator Setting 0	R/WM	h52_08_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23 - 15 - 15	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DDE[1:0] 22 - 14	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21 - 13	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20 - 12	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3 19 - 11 19 - 11	SW2MHMODE 10 - 2 SW1AM 18 10 SW4AMHMODE 2 SW3M 18 - 10	SW2MC 9 - 10DE[3:0] 17 SW4BUOMODE 9 SW4AM 1 ODE[3:0] 17 - 9	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 - 8
0x1D	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode Table 110 Regulator Setting 0	R/WM	h52_08_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23 - 15 - 15 -	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DDE[1:0] 22 - 14 - 14 - 6	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21 - 13 - 5 SW3UOMODE 21 - 5 SW3UOMODE 21 - 5 SW3UOMODE 21 - 5 SW3UOMODE 5 SW3UOMODE 21 - 5 SW3UOMODE 5 SW3UOMO	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20 - 12 VUSE	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3 19 - 11 19 - 11 3 2 19 - 11 3 - 19 - 11 - 19 - 10 - 10 - 10 - - 10 - - - - - - - - - - - - -	SW2MHMODE 10 - 2 SW1AM 18 10 SW4AMHMODE 2 SW3M 18 - 10 VPLI	SW2MC 9 - 1 0DE[3:0] 17 SW4BUOMODE 9 SW4AM 1 0DE[3:0] 17 - 9 SW4AM 1 0DE[3:0]	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 - 16 - 8 VGEN2[2]
0x1D	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode Table 110 Regulator Setting 0	R/WM	h52_08_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23 - 15 - 15 - 7	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DDE[1:0] 22 - 14 - 14 - 6	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21 - 13 - 5 SW3UOMODE 21 - 5 SW3UOMODE 21 - 5 SW3UOMODE 21 - 5 SW3UOMODE 5 SW3UOMODE 21 - 5 SW3UOMODE 5 SW3UOMO	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20 - 12 VUSE 4	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3 19 - 11 52[1:0] 3	SW2MHMODE 10 - 2 SW1AM 18 10 SW4AMHMODE 2 SW3M 18 - 10 VPLI	SW2MC 9 - 1 MODE[3:0] 17 SW4BUOMODE 9 SW4AM 1 0DE[3:0] 17 - 9 - (1:0] 1	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 - 16 - 8 VGEN2[2]
0x1D	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode Table 110 Regulator Setting 0	R/WM	h52_08_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23 - 15 - 7 SW4AMC 23 - 15 - 7 VGEN	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DE[1:0] 22 - 14 - 6 22 14 - 6 21:0]	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21 - 13 - 5 VDA(PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20 - 12 VUSE 4 C[1:0]	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3 19 - 11 32 [1:0] 3 -	SW2MHMODE 10 - 2 SW1AM 18 10 SW4AMHMODE 2 SW3M 18 - 10 VPLI 2 SW3M	SW2MC 9 - 10DE[3:0] 17 SW4BUOMODE 9 SW4AM 1 0DE[3:0] 17 - 9 L[1:0] 1 VGEN1[2:0]	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 - 8 VGEN2[2] 0 0
0x1D 0x1E	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode Table 110 Regulator Setting 0 Table 111	R/WM R/WM	h52_08_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23 - 15 - 7 VGEN	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DDE[1:0] 22 - 14 - 6 2[1:0] 22 - 14 - 22 - 14 - 22 - 14 - 22 - 2 - 22 - 2	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21 - 13 - 5 VDAC 21	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20 - 12 VUSE 4 C[1:0] 20	SW2UOMODE 11 - 3 - 19 ODE[3:0] 11 SW4AUOMODE 3 - 19 - 11 3 - 11 3 - 19 - 11 - 11 - 19 - 11 - 19 - 11 - 19 - 11 - 19 - 10 - 11 - 10 - 10 - 11 - 10 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 10 - 11 - 19 - - 19 - - 19 - - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	SW2MHMODE 10 - 2 SW1AM 18 - 10 SW4AMHMODE 2 SW3M 18 - 10 VPLI 2 18	SW2MC 9 - 1 MODE[3:0] 17 SW4BUOMODE 9 SW4AM 1 ODE[3:0] 17 - 9 U[1:0] 1 VGEN1[2:0] 17	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 - 8 VGEN2[2] 0 16 - 16
0x1D	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode Table 110 Regulator Setting 0 Table 111 SWBST Control	R/WM R/WM	h52_08_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23 - 15 - 7 VGEN 23 - 15 - 7 VGEN	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DDE[1:0] 22 - 14 6 2[1:0] 22 - 14 - 6 2[1:0] 22 - 14 - 6 2[1:0] 22 - 14 - 6 2[1:0] 22 - - 21 - - 21 - - - - - - - - - - - - -	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21 - 13 - 5 VDA(21 - 13 - 5 VDA(21 -	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20 - 12 VUSE 4 C[1:0] 20 -	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3 19 - 11 32[1:0] 3 - 19 - 11 - 11 - 11 - 11 - 19 - 11 - 19 - 11 - 19 - 11 - 19 - 11 - 19 - 11 - 19 - 10 - 11 - 10 - 11 - 10 - 11 - - - - - - - - - - - - -	SW2MHMODE 10 - 2 SW1AM 18 2 SW3M 18 - 10 VPLI 2 10 VPLI 110 VPLI 12 13 14 15 16 17 18 10 VPLI 13 14 15 16 17 18 18 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 19 10 10 10 10 10 1	SW2MC 9 - 1 1 CODE[3:0] 17 SW4BUOMODE 9 SW4AM 1 ODE[3:0] 17 - 9 L[1:0] 1 VGEN1[2:0] 17 - 1 17 - 17 - 17 - 17 - 17 - 17 - 1	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 - 8 VGEN2[2] 0 16 - 16 - 16 -
0x1D 0x1E	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode Table 110 Regulator Setting 0 Table 111	R/WM R/WM	h52_08_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23 - 15 - 7 VGEN 23 - 15 - - 15 - 15 - - 15 - 15 - 15 - - - - - - - - - - - - -	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DDE[1:0] 22 - 14 - 6 2[1:0] 22 - 14 14 14 14 14 14 14 14 14	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21 - 13 - 5 VDA(21 - 13 - 14 - 13 - 13 - 13 - 14 - 14 - 13 - 14 - 13 - 14 - 13 - - 13 - - 13 - - 13 - - 13 - - - 13 - - - 13 - - - 13 - - - - - - - - - - - - -	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20 - 12 VUSE 4 C[1:0] 20 - 12 VUSE 4 C[1:0] 20 - 12 - 12 - 12 - 12 - 12 - - 12 - - - - - - - - - - - - -	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3 - 11 32[1:0] 3 - 19 - 11 32[1:0] 3 - 19 - 11 - - - - - - - - - - - - -	SW2MHMODE 10 2 SW1AM 18 2 SW4AMHMODE 2 SW3M 18 - 10 VPLI 2 SW3M 18 - 10 VPLI 10 VPLI 10 10 110 110 110 110 110 110 110 110 110 - 110 - 110 - - - - - - - - - - - - - - - - - - - <td>SW2MC 9 - 10DE[3:0] 17 SW4BUOMODE 9 SW4AM 1 0DE[3:0] 17 - 9 U[1:0] 1 VGEN1[2:0] 17 - 9 SW4AM 1 0DE[3:0] 17 - 9 SW4AM 1 0DE[3:0] 17 - 9 SW4AM 1 0DE[3:0] 17 - 9 SW4AM 1 0DE[3:0] 17 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4 SW4 SW4 SW4 SW4 SW4 SW4 SW4 SW4 SW4</td> <td>DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 - 8 VGEN2[2] 0 16 - 16 - 8 VGEN2[2] 0 16 - 8 VGEN2[2] 0 - 8 - - 8 - - 8 - - 8 - - 8 - - 8 - - - 8 - - - 8 - - - - - - - - - - - - -</td>	SW2MC 9 - 10DE[3:0] 17 SW4BUOMODE 9 SW4AM 1 0DE[3:0] 17 - 9 U[1:0] 1 VGEN1[2:0] 17 - 9 SW4AM 1 0DE[3:0] 17 - 9 SW4AM 1 0DE[3:0] 17 - 9 SW4AM 1 0DE[3:0] 17 - 9 SW4AM 1 0DE[3:0] 17 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 0 SW4BUOMODE 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4AM 1 SW4BUOMODE 9 SW4 SW4 SW4 SW4 SW4 SW4 SW4 SW4 SW4 SW4	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 - 8 VGEN2[2] 0 16 - 16 - 8 VGEN2[2] 0 16 - 8 VGEN2[2] 0 - 8 - - 8 - - 8 - - 8 - - 8 - - 8 - - - 8 - - - 8 - - - - - - - - - - - - -
0x1D 0x1E	1, 2 Mode Table 109 Regulator 3, 4, 5 Mode Table 110 Regulator Setting 0 Table 111 SWBST Control	R/WM R/WM	h52_08_48	PLLX 15 SW2MO 7 SW1DVSSI 23 SW5UOMODE 15 7 SW4AMC 23 - 15 7 VGEN 23 - 15 - 15 - 15	PLLEN 14 DE[1:0] 6 PEED[1:0] 22 SW5MHMODE 14 SW4BMO 6 DE[1:0] 22 - 14 - 6 2[1:0] 22 - 14	SW2DVSS 13 - 5 SW1AUOMODE 21 13 DE[3:0] 5 SW3UOMODE 21 - 13 - 13 - 5 VDA(21 - 13 - 13 - 13 - 5 VDA(21 - 13 - 5 VDA(21 - 13 - 5 5 VDA(5 - 13 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 5 5 5 5	PEED[1:0] 12 - 4 SW1AMHMODE 20 SW5M 12 4 SW3MHMODE 20 - 12 VUSE 4 C[1:0] 20 - 12 VUSE 4	SW2UOMODE 11 - 3 19 ODE[3:0] 11 SW4AUOMODE 3 - 11 SW4AUOMODE 3 - 11 32[1:0] 3 - 19 - 11 3 - 19 - 11 3 - 110 - 3	SW2MHMODE 10 - 2 SW1AM 18 2 SW3M 18 - 10 VPLI 2 18 - 10 VPLI 18 - 10 VPLI 10 10 10 10 10 10 10 11 10 11 12 13 14 15 16 17 18 18 19 10	SW2MC 9 - 1 1 CODE[3:0] 17 SW4BUOMODE 9 SW4AM 1 ODE[3:0] 17 - 9 L[1:0] 1 VGEN1[2:0] 17 - 9 J 1 17 - 9 J 17 - 9 J 17 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DDE[3:2] 8 - 0 16 SW4BMHMODE 8 ODE[3:2] 0 16 - 8 VGEN2[2] 0 16 - 8 VGEN2[2] 0

34709

				23	22	21	20	19	18	17	16
				-	-	-	VUSB2MODE	VUSB2STBY	VUSB2EN	VUSB2CONFIG	VPLLSTBY
	Regulator			15	14	13	12	11	10	9	8
0x20	Mode 0 Table 113	R/WM	h0X_XX_XX	VPLLEN	VGEN2MODE	VGEN2STBY	VGEN2EN	VGEN2CONFIG	VREFDDREN	-	-
				7	6	5	4	3	2	1	0
				-	VDACMODE	VDACSTBY	VDACEN	VUSBEN	-	VGEN1STBY	VGEN1EN
	-			23	22	21	20	19	18	17	16
							-		-	-	SPARE
	GPIOLV0			15	14	13	12	11	10	9	8
0x21	Control Table 114	R/W	h00_38_0X	SRE1	SRE0	PUS1	PUS0	PUE	DSE	ODE	PKE
				7	6	5	4	3	2	1	0
				INT1	INTO	DBNC1	DBNC0	HYS	DOUT	DIN	DIR
				23	22	21	20	19	18	17	16
				-	-	-		-	-	-	SPARE
	GPIOLV1			15	14	13	12	11	10	9	8
0x22	Control	R/W	h00_38_0X	SRE1	SRE0	PUS1	PUS0	PUE	DSE	ODE	PKE
	<u>Table 115</u>			7	6	5	4	3	2	1	0
				INT1	INTO	DBNC1	DBNC0	HYS	DOUT	DIN	DIR
				23	22	21	20	19	18	17	16
				-	-	-	-	-	-	-	SPARE
	GPIOLV2			15	14	13	12	11	10	9	8
0x23	Control Table 116	R/W	h00_38_0X	SRE1	SRE0	PUS1	PUS0	PUE	DSE	ODE	PKE
				7	6	5	4	3	2	1	0
				INT1	INT0	DBNC1	DBNC0	HYS	DOUT	DIN	DIR
		_						10			
				23	22	21	20	19	18	17	16
				- 23	-	- 21	- 20	-	- 18	-	16 SPARE
	GPIOLV3										
0x24	Control	R/W	h00_38_0X	-	-	-	-	-	-	-	SPARE
0x24		R/W	h00_38_0X	- 15	- 14	- 13	- 12	- 11	- 10	- 9	SPARE 8
0x24	Control	R/W	h00_38_0X	- 15 SRE1	- 14 SRE0	- 13 PUS1	- 12 PUS0	- 11 PUE	- 10 DSE	- 9 ODE	SPARE 8 PKE
0x24	Control	R/W	h00_38_0X	- 15 SRE1 7	- 14 SRE0 6	- 13 PUS1 5	- 12 PUS0 4	- 11 PUE 3	- 10 DSE 2	- 9 ODE 1	SPARE 8 PKE 0
0x24	Control	R/W	h00_38_0X	- 15 SRE1 7 INT1	- 14 SRE0 6 INT0	- 13 PUS1 5 DBNC1	- 12 PUS0 4 DBNC0	- 11 PUE 3 HYS	- 10 DSE 2 DOUT	- 9 ODE 1 DIN	SPARE 8 PKE 0 DIR
0x25	Control Table 117			- 15 SRE1 7 INT1 23	- 14 SRE0 6 INT0 22	- 13 PUS1 5 DBNC1 21	- 12 PUS0 4 DBNC0 20	- 11 PUE 3 HYS 19	- 10 DSE 2 DOUT 18	- 9 ODE 1 DIN 17	SPARE 8 PKE 0 DIR 16
	Control	R/W	h00_38_0X	- 15 SRE1 7 INT1 23 -	- 14 SRE0 6 INT0 22 -	- 13 PUS1 5 DBNC1 21 -	- 12 PUS0 4 DBNC0 20 -	- 11 PUE 3 HYS 19 -	- 10 DSE 2 DOUT 18 -	- 9 ODE 1 DIN 17	SPARE 8 PKE 0 DIR 16 -
0x25 to	Control Table 117			- 15 SRE1 7 INT1 23 - 15	- 14 SRE0 6 INT0 22 - 14	- 13 PUS1 5 DBNC1 21 - 13	- 12 PUS0 4 DBNC0 20 - 12	- 11 PUE 3 HYS 19 - 11	- 10 DSE 2 DOUT 18 - 10	- 9 ODE 1 DIN 17 - 9	SPARE 8 PKE 0 DIR 16 - 8
0x25 to	Control Table 117			- 15 SRE1 7 INT1 23 - 15 -	- 14 SRE0 6 INT0 22 - 14 - 14 -	- 13 PUS1 5 DBNC1 21 - 13 -	- 12 PUS0 4 DBNC0 20 - 12 12 -	- 11 PUE 3 HYS 19 - 11 - 11 -	- 10 DSE 2 DOUT 18 - 10 -	- 9 ODE 1 DIN 17 - 9 -	SPARE 8 PKE 0 DIR 16 - 8 -
0x25 to	Control Table 117			- 15 SRE1 7 INT1 23 - 15 7 7 7	- 14 SRE0 6 INT0 22 - 14 - 6	- 13 PUS1 5 DBNC1 21 - 13 - 5	- 12 PUS0 4 DBNC0 20 - 12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 11 PUE 3 HYS 19 - 11 - 3 3	- 10 DSE 2 DOUT 18 - 10 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 9 ODE 1 DIN 17 - 9 - 1	SPARE 8 PKE 0 DIR 16 - 8 - 0 0
0x25 to	Control Table 117			- 15 SRE1 7 INT1 23 - 15 7 7	- 14 SRE0 6 INT0 22 - 14 - 6 6 - 14 - 6 6 6	- 13 PUS1 5 DBNC1 21 - 13 - 5 -	- 12 PUS0 4 DBNC0 20 - 12 4 4 - 12 - 4 - 4 4	- 11 PUE 3 HYS 19 - 11 - 3 3 - 11 - 3	- 10 DSE 2 DOUT 18 - 10 - 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 9 ODE 1 DIN 17 - 9 - 1	SPARE 8 PKE 0 DIR 16 - 8 - 0 - 0 - 0 - 0 - 0 -
0x25 to 0x2A	Control Table 117	NU	h00_00_00	- 15 SRE1 7 INT1 23 - 15 - 7 23	- 14 SRE0 6 INT0 22 - 14 - 6 - 22	- 13 PUS1 5 DBNC1 21 - 13 - 5 5 - 21	- 12 PUS0 4 DBNC0 20 - 12 - 4 - 20 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 20 20 20 20 20 20 20 20 20	- 11 PUE 3 HYS 19 - 11 - 3 3 - 11 - 11 - 3 - 19 19 - 19 19 - 19 19 - 19 19 19 19 19 19 19 19 19 19 19 19 19	- 10 DSE 2 DOUT 18 - 10 - 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 9 ODE 1 DIN 17 - 9 - 1 1 - 17	SPARE 8 PKE 0 DIR 16 - 8 - 0 - 0 - 0 - 0 - 0 -
0x25 to	Control Table 117 Unused			- 15 SRE1 7 INT1 23 - 15 7 7 23 7 - 23 SPARE	- 14 SRE0 6 INT0 22 - 14 - 6 6 - 22 SPARE	- 13 PUS1 5 DBNC1 21 - 13 - 5 5 - 21 SPARE	- 12 PUS0 4 DBNC0 20 - 12 - 4 - 20 TSPENDETEN	- 11 PUE 3 HYS 19 - 11 - 11 - 3 - 19 SPARE	- 10 DSE 2 DOUT 18 - 10 - 2 10 - 18 - 10 - 10 - 18 - 10 - 10 - 18 - 10 - 18 - 18	- 9 ODE 1 DIN 17 - 9 9 - 1 1 - 17 TSSTOP[2:0]	SPARE 8 PKE 0 DIR 16 - 0 - 16 - 16 - 16
0x25 to 0x2A	Control Table 117 Unused	NU	h00_00_00	- 15 SRE1 7 INT1 23 - 15 7 7 23 23 SPARE 15	- 14 SRE0 6 INT0 22 - 14 - 6 6 - 22 SPARE 14	- 13 PUS1 5 DBNC1 21 - 13 - 5 - 21 SPARE 13	- 12 PUS0 4 DBNC0 20 - 12 - 12 - 4 - 20 TSPENDETEN 12	- 11 PUE 3 HYS 19 - 11 - 3 - 11 - 3 - 19 SPARE 11	- 10 DSE 2 DOUT 18 - 10 - 2 2 - 10 - 18 18 10 10 10 10 10 10 10 10 10 10 10 10 10	- 9 ODE 1 DIN 17 - 9 - 1 1 - 17 TSSTOP[2:0] 9	SPARE 8 PKE 0 DIR 16 - 0 - 0 - 16 - 16 - 16 - 0 - 16 8 8
0x25 to 0x2A	Control Table 117 Unused	NU	h00_00_00	- 15 SRE1 7 INT1 23 - 15 7 7 23 SPARE 15 TSHOLD	- 14 SRE0 6 INT0 22 - 14 - 6 6 - 22 SPARE 14 TSCONT	- 13 PUS1 5 DBNC1 21 - 13 - 5 - 21 SPARE 13 TSSTART	- 12 PUS0 4 DBNC0 20 - 12 - 4 - 20 7 20 TSPENDETEN 12 TSEN	- 11 PUE 3 HYS 19 - 11 - 11 - 3 - 19 SPARE 11 SPARE	- 10 DSE 2 DOUT 18 - 10 - 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 9 ODE 1 DIN 17 - 9 - 1 1 17 TSSTOP[2:0] 9 SPARE	SPARE 8 PKE 0 DIR 16 - 8 - 0 - 16 16 8 THERM
0x25 to 0x2A	Control Table 117 Unused	NU	h00_00_00	- 15 SRE1 7 INT1 23 - 15 7 23 23 SPARE 15 TSHOLD 7	- 14 SRE0 6 INT0 22 - 14 - 6 6 - 22 SPARE 14 TSCONT	- 13 PUS1 5 DBNC1 21 - 13 - 5 - 21 SPARE 13 TSSTART 5	- 12 PUS0 4 DBNC0 20 - 12 - 4 - 20 7 20 TSPENDETEN 12 TSEN	- 11 PUE 3 HYS 19 - 11 - 11 - 3 - 19 SPARE 11 SPARE 3	- 10 DSE 2 DOUT 18 - 10 - 10 - 10 - 10 - 10 - 10 - 18 - 10 - 18 - 10 - 2 - 18 - 2 - 2 2 - 2 2 - 2 - 2 - 2 - 2 - 2 -	- 9 ODE 1 DIN 17 - 9 - 1 - 1 - 17 TSSTOP[2:0] 9 SPARE 1	SPARE 8 PKE 0 DIR 16 - 0 - 16 - 16 - 16 - 16 - 0 - 16 8 THERM 0
0x25 to 0x2A	Control Table 117 Unused	NU	h00_00_00	- 15 SRE1 7 INT1 23 - 15 7 15 7 23 SPARE 15 TSHOLD 7 SPARE	- 14 SRE0 6 INT0 22 - 14 - 6 - 22 SPARE 14 TSCONT 6	- 13 PUS1 5 DBNC1 21 - 13 - 5 - 21 SPARE 13 TSSTART 5 ADSTOP[2:0] 21	- 12 PUS0 4 DBNC0 20 - 12 - 12 - 12 - 12 TSPENDETEN 12 TSPENDETEN 12 A 4 - 1 4 - 12 A 4 - 1 4 - 12 A 4 - 1 - 1	- 11 PUE 3 HYS 19 - 11 - 11 - 3 - 19 SPARE 11 SPARE 11 SPARE 3 ADHOLD	- 10 DSE 2 DOUT 18 - 10 - 10 - 2 - 10 - 10 - 10 - 18 - 10 SPARE 2 ADCONT 18 - 10 - 18	- 9 ODE 1 DIN 17 - 9 - 1 1 - 17 TSSTOP[2:0] 9 SPARE 1 ADSTART	SPARE 8 PKE 0 DIR 16 - - 8 - 0 - 16 - 16 8 THERM 0 ADEN
0x25 to 0x2A 0x2B	Control Table 117 Unused	NU	h00_00_00 h00_00_00	- 15 SRE1 7 INT1 23 - 15 7 15 7 23 SPARE 15 TSHOLD 7 SPARE	- 14 SRE0 6 INT0 22 - 14 - 6 - 22 SPARE 14 TSCONT 6 22 22	- 13 PUS1 5 DBNC1 21 - 13 - 5 - 21 SPARE 13 TSSTART 5 ADSTOP[2:0] 21	- 12 PUS0 4 DBNC0 20 - 12 - 12 - 12 - 12 TSPENDETEN 12 TSPENDETEN 12 A 4 - 1 4 - 12 A 4 - 1 4 - 12 A 4 - 1 - 1	- 11 PUE 3 HYS 19 - 11 - 11 - 3 - 19 SPARE 11 SPARE 11 SPARE 3 ADHOLD	- 10 DSE 2 DOUT 18 - 10 - 10 - 2 - 10 - 10 - 10 - 18 - 10 SPARE 2 ADCONT 18 - 10 - 18	- 9 ODE 1 DIN 17 - 9 - 1 1 - 17 TSSTOP[2:0] 9 SPARE 1 ADSTART 17	SPARE 8 PKE 0 DIR 16 - 8 - 0 - 16 - 8 - 16 - 16 - 0 - 16 - 0 - 0 ADEN
0x25 to 0x2A	Control Table 117 Unused	NU	h00_00_00	- 15 SRE1 7 INT1 23 - 15 - 7 23 SPARE 15 TSHOLD 7 SPARE 23	- 14 SRE0 6 INT0 22 - 14 - 6 - 22 SPARE 14 TSCONT 6 22 SPARE 14 TSCONT 6 22 SPARE	- 13 PUS1 5 DBNC1 21 - 13 - 5 - 21 SPARE 13 TSSTART 5 ADSTOP[2:0] 21 3[3:0] 13	- 12 PUS0 4 DBNC0 20 - 12 - 12 - 4 - 20 TSPENDETEN 12 TSEN 4 20 20	- 11 PUE 3 HYS 19 - 11 - 11 - 3 - 19 SPARE 11 SPARE 11 SPARE 3 ADHOLD 19	- 10 DSE 2 DOUT 18 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	- 9 ODE 1 DIN 17 - 9 - 1 1 - 17 TSSTOP[2:0] 9 SPARE 1 ADSTART 17 - Y2[3:0]	SPARE 8 PKE 0 DIR 16 - 16 THERM 0 ADEN 16
0x25 to 0x2A 0x2B	Control Table 117 Unused ADC 0 Table 120	NU	h00_00_00 h00_00_00	- 15 SRE1 7 INT1 23 - 15 - 7 23 SPARE 15 TSHOLD 7 SPARE 23	- 14 SRE0 6 INT0 22 - 14 - 6 - 22 SPARE 14 TSCONT 6 22 TSDLY 14	- 13 PUS1 5 DBNC1 21 - 13 - 5 - 21 SPARE 13 TSSTART 5 ADSTOP[2:0] 21 3[3:0] 13	- 12 PUS0 4 DBNC0 20 - 12 - 12 - 4 - 20 TSPENDETEN 12 TSEN 4 20 20	- 11 PUE 3 HYS 19 - 11 - 11 - 3 - 19 SPARE 11 SPARE 11 SPARE 3 ADHOLD 19	- 10 DSE 2 DOUT 18 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	- 9 ODE 1 DIN 17 - 9 - 1 1 - 17 TSSTOP[2:0] 9 SPARE 1 ADSTART 17 Y2[3:0] 9	SPARE 8 PKE 0 DIR 16 - 16 - 16 - 0 - 0 - 0 - 0 ADEN 16
0x25 to 0x2A 0x2B	Control Table 117 Unused ADC 0 Table 120	NU	h00_00_00 h00_00_00	- 15 SRE1 7 INT1 23 - 15 7 7 23 SPARE 15 TSHOLD 7 SPARE 23 23 15	- 14 SRE0 6 INT0 22 - 14 - 14 - 6 6 - 22 SPARE 14 TSCONT 6 22 TSDLY 14	- 13 PUS1 5 DBNC1 21 - 13 - 13 - 5 21 SPARE 13 TSSTART 5 ADSTOP[2:0] 21 3[3:0] 13 1[3:0] 5	- 12 PUS0 4 DBNC0 20 - 12 - 4 - 20 TSPENDETEN 12 TSPENDETEN 12 TSEN 20 4	- 11 PUE 3 HYS 19 - 11 - 11 - 3 - 19 SPARE 11 SPARE 3 ADHOLD 19 11	- 10 DSE 2 DOUT 18 - 10 - 10 - 2 - 10 - 10 - 10 - 10 - 10	- 9 ODE 1 DIN 17 - 9 - 1 1 - 17 TSSTOP[2:0] 9 SPARE 1 ADSTART 17 ADSTART 17 - YZ[3:0] 9 - YZ[3:0]	SPARE 8 PKE 0 DIR 16 - 0 - 16 - 16 - 0 - 0 - 0 - 16 8 THERM 0 ADEN 16 8 8

				23	22	21	20	19	18	17	16
					ADSEL	5[3:0]			ADSE	EL4[3:0]	
0.05	ADC 2			15	14	13	12	11	10	9	8
0x2D	Table 122	R/W	h00_00_00		ADSEL	3[3:0]			ADSE	EL2[3:0]	
				7	6	5	4	3	2	1	0
					ADSEL	1[3:0]			ADSE	EL0[3:0]	
				23	22	21	20	19	18	17	16
				TSSEL	.7[1:0]	TSSEI	L6[1:0]	TSSE	EL5[1:0]	TSSE	L4[1:0]
0.05	ADC 3			15	14	13	12	11	10	9	8
0x2E	Table 123	R/W	h00_00_00	TSSEL	.3[1:0]	TSSEI	L2[1:0]	TSSE	EL1[1:0]	TSSE	L0[1:0]
				7	6	5	4	3	2	1	0
					ADSEL	7[3:0]			ADSE	EL6[3:0]	
				23	22	21	20	19	18	17	16
							ADRES	ULT1[9:2]			
0.05	ADC 4			15	14	13	12	11	10	9	8
0x2F	<u>Table 124</u>	R/W	h00_00_00	ADRESU	LT1[1:0]	-	-		ADRES	ULT0[9:6]	
				7	6	5	4	3	2	1	0
						ADRESU	LT0[5:0]			-	-
				23	22	21	20	19	18	17	16
							ADRES	GULT3[9:2]			
0x30	ADC 5	R/W	h00 00 00	15	14	13	12	11	10	9	8
0x30	Table 125	R/W	h00_00_00	ADRESU	LT3[1:0]	-	-		ADRES	ULT2[9:6]	
				7	6	5	4	3	2	1	0
						ADRESU	LT2[5:0]			-	-
				23	22	21	20	19	18	17	16
				23	22	21		19 SULT5[9:2]	18	17	16
0x31	ADC 6	R/W	h00 00 00	23 15	22 14	21 13			18 10	17 9	16 8
0x31	ADC 6 <u>Table 126</u>	R/W	h00_00_00	15 ADRESU	14		ADRES	SULT5[9:2]	10		
0x31		R/W	h00_00_00	15	14	13	ADRES	SULT5[9:2]	10	9	
0x31		R/W	h00_00_00	15 ADRESU	14 JLT5[1:0]	13	ADRES 12 - 4	SULT5[9:2]	10 ADRES	9 ULT4[9:6]	8
0x31		R/W	h00_00_00	15 ADRESU	14 JLT5[1:0]	13 - 5	ADRES 12 - 4 LT4[5:2] 20	SULT5[9:2] 11 3 19	10 ADRES	9 ULT4[9:6] 1	8
0x31		R/W	h00_00_00	15 ADRESU 7 23	14 JLT5[1:0] 6 22	13 - 5 ADRESU 21	ADRES 12 - 4 LT4[5:2] 20 ADRES	ULT5[9:2] 11 3 19 ULT7[9:2]	10 ADRES 2 18	9 ULT4[9:6] - 17	8 0 - 16
	Table 126 ADC 7			15 ADRESU 7 23 15	14 JLT5[1:0] 6 22 14	13 - 5 ADRESU	ADRES 12 - 4 LT4[5:2] 20	SULT5[9:2] 11 3 19	10 ADRES 2 18	9 ULT4[9:6] - 17 9	8 0 -
0x31 0x32	Table 126	R/W	h00_00_00	15 ADRESU 7 23 15 ADRESU	14 JLT5[1:0] 6 22 14 JLT7[9:2]	13 - 5 ADRESU 21 13 -	ADRES 12 - 4 LT4[5:2] 20 ADRES 12	ULT5[9:2] 11 3 19 ULT7[9:2] 11	10 ADRES 2 18 10 ADRES	9 ULT4[9:6] - 17 9 ULT6[9:6]	8 0 - 16 8
	Table 126 ADC 7			15 ADRESU 7 23 15	14 JLT5[1:0] 6 22 14	13 - 5 ADRESU 21 13 - 5	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4	ULT5[9:2] 11 3 19 ULT7[9:2]	10 ADRES 2 18	9 ULT4[9:6] - 17 9	8 0 - 16
	Table 126 ADC 7			15 ADRESU 7 23 15 ADRESU 7	14 JLT5[1:0] 6 22 14 JLT7[9:2] 6	13 - 5 ADRESU 21 13 - 5 ADRESU	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0]	ULT5[9:2] 11 3 19 ULT7[9:2] 11 3 3	10 ADRES 2 18 10 ADRES 2	9 ULT4[9:6] - 17 9 ULT6[9:6] 1 -	8 0 - 16 8 8 0 -
	Table 126 ADC 7			15 ADRESU 7 23 15 ADRESU 7 23	14 JLT5[1:0] 6 22 14 JLT7[9:2] 6 22	13 - 5 ADRESU 21 13 - 5 ADRESU 21	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20	ULT5[9:2] 11 3 19 ULT7[9:2] 11 3 19 19	10 ADRES 2 18 10 ADRES 2 18	9 ULT4[9:6] 1 - 17 9 ULT6[9:6] 1 - 17	8 0 - 16 8 0 - 16
	Table 126 ADC 7			15 ADRESU 7 23 15 ADRESU 7 23 -	14 JLT5[1:0] 6 22 14 JLT7[9:2] 6 22 -	13 - 5 ADRESU 21 13 - 5 ADRESU 21 -	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	ULT5[9:2] 11 3 19 ULT7[9:2] 11 3 19 -	10 ADRES 2 18 10 ADRES 2 18 -	9 ULT4[9:6] 1 - 17 9 ULT6[9:6] 1 - 17 -	8 0 - 16 8 0 - 16 -
	Table 126 ADC 7	R/W	h00_00_00	15 ADRESU 7 23 23 15 ADRESU 7 23 - 15	14 JLT5[1:0] 6 22 14 JLT7[9:2] 6 22 - 14	13 - 5 ADRESU 21 13 - 5 ADRESU 21 - 13	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	ULT5[9:2] 11 3 19 ULT7[9:2] 11 3 19 - 11 11	10 ADRES 2 18 10 ADRES 2 18 - 10	9 ULT4[9:6] 1 - 17 9 ULT6[9:6] 1 - 17 - 9 9	8 0 - 16 8 0 - 16 - 16 - 8 8
0x32	Table 126 ADC 7 Table 127	R/W		15 ADRESU 7 23 23 15 ADRESU 7 23 - 15 -	14 JLT5[1:0] 6 22 14 JLT7[9:2] 6 22 - 14 - 14 -	13 - 5 ADRESU 21 13 - 5 ADRESU 21 - 13 - 13	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	ULT5[9:2] 11 3 ULT7[9:2] 11 3 ULT7[9:2] 11 3 19 - 11 - 11 -	10 ADRES 2 18 10 ADRES 2 18 - 10 -	9 ULT4[9:6] 1 - 17 9 ULT6[9:6] 1 - 17 - 9 9 -	8 0 - 16 8 0 - 16 - 8 - 8 -
0x32	Table 126 ADC 7 Table 127	R/W	h00_00_00	15 ADRESU 7 23 15 ADRESU 7 23 - 15 - 7 7	14 JL T5[1:0] 6 22 14 JL T7[9:2] 6 22 - 14 - 6 6	13 - 5 ADRESU 21 13 - 5 ADRESU 21 - 13 - 5	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 12 - 12 - 4 LT6[5:0] - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	ULT5[9:2] 11 3 19 ULT7[9:2] 11 3 ULT7[9:2] 11 - 11 - 3 3	10 ADRES 2 18 10 ADRES 2 2 18 - 10 - 2 2	9 ULT4[9:6] 1 - 17 9 ULT6[9:6] 1 - 17 - 9 9 - 1	8 0 - 16 8 0 - 16 - 8 - 8 - 0
0x32	Table 126 ADC 7 Table 127	R/W	h00_00_00	15 ADRESU 7 23 15 ADRESU 7 23 - 23 - 15 - 7 7 -	14 JLT5[1:0] 6 22 14 JLT7[9:2] 6 22 - 14 - 6 - 6 - 6 - 6 - 6 - - 6 - 6	13 - 5 ADRESU 21 13 - 5 ADRESU 21 - 13 - 5 5 -	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 12 - 12 - 4 LT6[5:0] 20 - 12 - 4 LT6[5:0] -	ULT5[9:2] 11 3 19 ULT7[9:2] 11 3 ULT7[9:2] 11 - 11 - 3 - 3 -	10 ADRES 2 18 10 ADRES 2 18 - 10 - 2 -	9 ULT4(9:6) 1 - 17 9 ULT6(9:6) 1 - 17 - 9 - 9 - 1 1 -	8 0 - 16 8 0 - 16 - 8 - 8 - 0 - 0 0 -
0x32	Table 126 ADC 7 Table 127	R/W	h00_00_00	15 ADRESU 7 23 15 ADRESU 7 23 - 15 - 7 - 23 -	14 JLT5[1:0] 6 22 14 JLT7[9:2] 6 22 - 14 - 6 - 6 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22	13 - 5 ADRESU 21 13 - 5 ADRESU 21 - 13 - 5 5 - 21	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 12 - 12 - 4 LT6[5:0] 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	ULT5[9:2] 11 3 ULT7[9:2] 11 3 ULT7[9:2] 11 - 11 - 3 - 19 - 11 - 11 - 19 - 11 - 19	10 ADRES 2 18 10 ADRES 2 10 - 10 - 2 - 18 - 18	9 ULT4[9:6] 1 - 17 9 ULT6[9:6] 1 - 17 - 9 - 1 1 - 17 - 17 -	8 0 - 16 8 0 - 16 - 8 - 0 - 16 - 16
0x32	Table 126 ADC 7 Table 127 Unused	R/W	h00_00_00	15 ADRESU 7 23 15 ADRESU 7 23 - 15 - 7 - 23 - 23 - 23 -	14 JL T5[1:0] 6 22 14 JL T7[9:2] 6 22 - 14 - 6 - 6 - 14 - 6 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - - - - - - - - - - - - - - - - - -	13 - 5 ADRESU 21 13 - 5 ADRESU 21 - 13 - 5 - 21 - 21 - 21 -	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 12 - 12 - 4 LT6[5:0] 20 - 12 - 20 - 20 - 20 - 20 - 20 - 20 -	ULT5[9:2] 11 3 19 ULT7[9:2] 11 3 19 - 11 - 11 - 3 - 19 - 11 - 11 - 11 - 11 - 11 - 11 - 19 - 11 - - 11 - - - - - - - - - - - - -	10 ADRES 2 18 10 ADRES 2 2 18 - 10 - 2 - 18 - 18 - 18 -	9 ULT4[9:6] 1 - 17 9 ULT6[9:6] 1 - 17 - 9 - 17 - 1 1 - 17 - 17 -	8 0 - 16 8 0 - 16 - 8 - 0 - 16 - 16 - 16 -
0x32	Table 126 ADC 7 Table 127	R/W	h00_00_00	15 ADRESU 7 23 15 ADRESU 7 23 - 15 - 23 - 23 - 23 - 23 - 15	14 JL T5[1:0] 6 22 14 JL T7[9:2] 6 22 14 - 6 - 14 - 6 - 22 - 14 - 14 - 14 - 14	13 - 5 ADRESU 21 - 5 ADRESU 21 - 13 - 5 ADRESU 21 - 13 - 13 - 13 - 21 - 13 - 13	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 12 - 4 LT6[5:0] - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	ULT5[9:2] 11 3 19 ULT7[9:2] 11 5 ULT7[9:2] 11 - 11 - 3 - 19 - 11 - 19 - 11 - 19 - 11 - - 11 - - 11 - - - 11 - - - - - - - - - - - - -	10 ADRES 2 18 10 ADRES 2 2 18 - 10 - 2 - 18 - 10 - 10	9 ULT4[9:6] 1 - 17 9 ULT6[9:6] 1 - 17 - 9 - 1 1 - 17 - 9 - 1 1 - 9 9 - 1 - 17 - 9 9 - 9 - 9 - 1 - 9 9 - 9 - 9 - -	8 0 - 16 8 0 - 16 - 8 - 0 - 16 - 16 - 16 - 8 8 -
0x32 0x33	Table 126 ADC 7 Table 127 Unused	R/W	h00_00_00	15 ADRESU 7 23 15 ADRESU 7 23 - 15 - 7 - 23 - 7 - 23 - 15 - 15 -	14 JLT5[1:0] 6 22 14 JLT7[9:2] 6 22 14 - 6 22 - 14 - 6 22 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	13 - 5 ADRESU 21 13 - 5 ADRESU 21 - 13 - 5 - 21 - 21 - 13 - 13 - 13 -	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 12 - 12 - 4 LT6[5:0] 20 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	ULT5[9:2] 11 3 19 ULT7[9:2] 11 11 3 3 19 - 11 - 3 - 19 - 11 - - 11 - - - 11 - - - 11 - - - - 11 - - - - - - - - - - - - -	10 ADRES 2 18 10 ADRES 2 18 - 10 - 2 - 18 - 10 - 10 - 10 - 10 -	9 ULT4(9:6) 1 - 17 9 ULT6(9:6) 1 - 17 - 9 - 1 1 - 17 - 9 - 1 1 - 9 - 1 7 - 9 - 9 - 1 - 9 - - 9 - - 9 - - 9 - - - 9 - - - -	8 0 - 16 8 0 - 16 - 8 - 0 - 16 - 16 - 16 - 8 8 - - 16 - 8 - - 8 - - -
0x32 0x33	Table 126 ADC 7 Table 127 Unused Supply Debounce	R/W	h00_00_00	15 ADRESU 7 23 15 ADRESU 7 23 - 15 - 23 - 23 - 23 - 23 - 15	14 JL T5[1:0] 6 22 14 JL T7[9:2] 6 22 14 - 6 - 14 - 6 - 22 - 14 - 14 - 14 - 14	13 - 5 ADRESU 21 - 5 ADRESU 21 - 13 - 5 ADRESU 21 - 13 - 13 - 13 - 21 - 13 - 13	ADRES 12 - 4 LT4[5:2] 20 ADRES 12 - 4 LT6[5:0] 20 - 12 - 4 LT6[5:0] - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	ULT5[9:2] 11 3 19 ULT7[9:2] 11 11 3 3 19 - 11 - 11 - 19 - 11 - 19 - 11 - 3 - 19 - 11 - 3 - 19 - 11 - - 3 - - 19 - - - - - - - - - - - - -	10 ADRES 2 18 10 ADRES 2 2 18 - 10 - 2 - 18 - 10 - 10	9 ULT4[9:6] 1 - 17 9 ULT6[9:6] 1 - 17 - 9 - 1 1 - 17 - 9 - 1 1 - 9 9 - 1 - 17 - 9 9 - 9 - 9 - 1 - 9 9 - 9 - 9 - -	8 0 - 16 8 0 - 16 - 8 - 0 - 16 - 16 - 16 - 8 8 -

34709

				23	22	21	20	19	18	17	16
				-	-	-	-	-	-	-	-
0x35				15	14	13	12	11	10	9	8
to 0x36	Unused	NU	h00_00_00	-	-	-	-	-	-	-	-
				7	6	5	4	3	2	1	0
				-	-	-	-	-	-	-	-
			_	23	22	21	20	19	18	17	16
				PWM2CL	KDIV[5:0]			PWM2DUTY[5:4]			
0x37	PWM Control		W h00_00_00	15	14	13	12	11	10	9	8
0X37	Table 131	R/W			PWM2DU	TY[3:0]			PWM1C	LKDIV[5:2]	
				7	6	5	4	3	2	1	0
				PWM1CL	KDIV[1:0]			PWM	IDUTY[5:0]		
				23	22	21	20	19	18	17	16
				-	-	-	-	-	-	-	-
0x38	Linuard	NUL	h00_00_00	15	14	13	12	11	10	9	8
to 0x3F	Unused	NU		-	-	-	-	-	-	-	-
				7	6	5	4	3	2	1	0
				-	-	-	-	-	-	-	-

7.9.4 SPI Register's Bit Description

Table 83. Register 0, Interrupt Status 0

Name	Bit #	R/W	Reset	Default	Description
ADCDONEI	0	RW1C	RESETB	0	ADC has finished requested conversions
TSDONEI	1	RW1C	RESETB	0	Touchscreen has finished requested conversions
TSPENDET	2	RW1C	RESETB	0	Touch screen pen detection
Reserved	12-3	R	-	-	Reserved
LOWBATT	13	RW1C	RESETB	0	Low battery threshold warning
Reserved	23-14	R	-	-	Reserved

Back to SPI/I2C Register Map

Table 84. Register 1, Interrupt Mask 0

Name	Bit #	R/W	Reset	Default	Description
ADCDONEM	0	R/W	RESETB	1	ADCDONEI mask bit
TSDONEM	1	R/W	RESETB	1	TSDONEI mask bit
TSPENDETM	2	R/W	RESETB	1	Touch screen pen detect mask bit
Reserved	12-3	R	-	-	Reserved
LOWBATTM	13	R/W	RESETB	1	LOBATLI mask bit
Reserved	23-14	R	-	-	Reserved

Table 85. Register 2, Reserved

Name	Bit #	R/W	Reset	Default	Description
Reserved	23-0	R	-	-	Reserved

Back to SPI/I2C Register Map

Table 86. Register 3, Interrupt Status 1

Name	Bit #	R/W	Reset	Default	Description
1HZI	0	RW1C	RTCPORB	0	1.0 Hz time tick
TODAI	1	RW1C	RTCPORB	0	Time of day alarm
Unused	2	R		0	Not available
PWRON1I	3	RW1C	OFFB	0	PWRON1 event
PWRON2I	4	RW1C	OFFB	0	PWRON2 event
WDIRESETI	5	RW1C	RTCPORB	0	WDI system reset event
SYSRSTI	6	RW1C	RTCPORB	0	PWRON system reset event
RTCRSTI	7	RW1C	RTCPORB	1	RTC reset event
PCI	8	RW1C	OFFB	0	Power cut event
WARMI	9	RW1C	RTCPORB	0	Warm start event
MEMHLDI	10	RW1C	RTCPORB	0	Memory hold event
THERM110	11	RW1C	RESETB	0	110 °C thermal threshold
THERM120	12	RW1C	RESETB	0	120 °C thermal threshold
THERM125	13	RW1C	RESETB	0	125 °C thermal threshold
THERM130	14	RW1C	RESETB	0	130 °C thermal threshold
CLKI	15	RW1C	RESETB	0	Clock source change
SCPI	16	RW1C	RESETB	0	Short-circuit protection trip detection
GPIOLV1I	17	RW1C	RESETB	0	GPIOLV1 interrupt
GPIOLV2I	18	RW1C	RESETB	0	GPIOLV2 interrupt
GPIOLV3I	19	RW1C	RESETB	0	GPIOLV3 interrupt
GPIOLV4I	20	RW1C	RESETB	0	GPIOLV4 interrupt
Unused	21	R	-	0	Not available
Reserved	22	R	-	-	Reserved
Unused	23	R	RESETB	0	Not available

Back to SPI/I2C Register Map

Table 87. Register 4, Interrupt Mask 1

Name	Bit #	R/W	Reset	Default	Description
1HZM	0	R/W	RTCPORB	1	1HZI mask bit
TODAM	1	R/W	RTCPORB	1	TODAI mask bit
Unused	2	R		1	Not available
PWRON1M	3	R/W	OFFB	1	PWRON1 mask bit

34709

Table 87. Register 4, Interrupt Mask 1

Name	Bit #	R/W	Reset	Default	Description
PWRON2M	4	R/W	OFFB	1	PWRON2 mask bit
WDIRESETM	5	R/W	RTCPORB	1	WDIRESETI mask bit
SYSRSTM	6	R/W	RTCPORB	1	SYSRSTI mask bit
RTCRSTM	7	R/W	RTCPORB	1	RTCRSTI mask bit
PCM	8	R/W	OFFB	1	PCI mask bit
WARMM	9	R/W	RTCPORB	1	WARMI mask bit
MEMHLDM	10	R/W	RTCPORB	1	MEMHLDI mask bit
THERM110M	11	R/W	RESETB	1	THERM110 mask bit
THERM120M	12	R/W	RESETB	1	THERM120 mask bit
THERM125M	13	R/W	RESETB	1	THERM125 mask bit
THERM130M	14	R/W	RESETB	1	THERM130 mask bit
CLKM	15	R/W	RESETB	1	CLKI mask bit
SCPM	16	R/W	RESETB	1	Short-circuit protection trip mask bit
GPIOLV1M	17	R/W	RESETB	1	GPIOLV1 interrupt mask bit
GPIOLV2M	18	R/W	RESETB	1	GPIOLV2 interrupt mask bit
GPIOLV3M	19	R/W	RESETB	1	GPIOLV3 interrupt mask bit
GPIOLV4M	20	R/W	RESETB	1	GPIOLV4 interrupt mask bit
Unused	21	R		0	Not available
Reserved	22	R	-	-	Reserved
Unused	23	R		1	Not available

Back to SPI/I2C Register Map

Table 88. Register 5, Interrupt Sense 1

Name	Bit #	R/W	Reset	Default	Description
Unused	2-0	R		0	Not available
PWRON1S	3	R	NONE	S	PWRON1I sense bit
PWRON2S	4	R	NONE	S	PWRON2I sense bit
Unused	10-5	R		0	Not available
THERM110S	11	R	NONE	S	THERM110 sense bit
THERM120S	12	R	NONE	S	THERM120 sense bit
THERM125S	13	R	NONE	S	THERM125 sense bit
THERM130S	14	R	NONE	S	THERM130 sense bit
CLKS	15	R	NONE	0	CLKI sense bit
Unused	21-16	R		0	Not available
Reserved	22	R	-	-	Reserved
Unused	23	R	NONE	0	Not available

Name	Bit #	R/W	Reset	Default	Description
ICTESTS	0	R	NONE	S	ICTEST sense state
PUMS1S	1	R	NONE	L	PUMS1 state
PUMS2S	2	R	NONE	L	PUMS2 state
PUMS3S	3	R	NONE	L	PUMS3 state
PUMS4S	4	R	NONE	L	PUMS4 state
PUMS5S	5	R	NONE	L	PUMS5 state
Unused	8-6	R		0	Not available
Reserved	9	R	-	-	Reserved
Unused	23-10	R		0	Not available

Table 89. Register 6, Power-up Mode Sense

Back to SPI/I2C Register Map

Table 90. Register 7, Identification

Name	Bit #	R/W	Reset	Default	Description
METAL_LAYER_REV0	0	R	NONE	Х	Metal Layer version
METAL_LAYER_REV1	1	R	NONE	Х	Pass 1.1 = 001
METAL_LAYER_REV2	2	R	NONE	х	Pass 1.2 = 010
FULL_LAYER_REV0	3	R	NONE	Х	
FULL_LAYER REV1	4	R	NONE	х	Full Layer version Pass 1.0 = 001
FULL_LAYER REV2	5	R	NONE	Х	
FIN0	6	R	NONE	х	
FIN1	7	R	NONE	Х	FIN version Pass 1.0 = 000
FIN2	8	R	NONE	Х	
FAB0	9	R	NONE	х	
FAB1	10	R	NONE	х	FAB version Pass 1.0 = 000
FAB2	11	R	NONE	Х	
Unused	18-12	R		0	Not available
PAGE0	19	R/W	DIGRESETB	0	
PAGE1	20	R/W	DIGRESETB	0	
PAGE2	21	R/W	DIGRESETB	0	SPI Page
PAGE3	22	R/W	DIGRESETB	0	
PAGE4	23	R/W	DIGRESETB	0	

Name	Bit #	R/W	Reset	Default	Description
SW1FAULT	0	R	NONE	S	SW1 fault detection
Reserved	1	R	-	-	Reserved
SW2FAULT	2	R	NONE	S	SW2 fault detection
SW3FAULT	3	R	NONE	S	SW3 fault detection
SW4AFAULT	4	R	NONE	S	SW4A fault detection
SW4BFAULT	5	R	NONE	S	SW4B fault detection
SW5FAULT	6	R	NONE	S	SW5 fault detection
SWBSTFAULT	7	R	NONE	S	SWBST fault detection
VUSBFAULT	8	R	NONE	S	VUSB fault detection
VUSB2FAULT	9	R	NONE	S	VUSB2 fault detection
VDACFAULT	10	R	NONE	S	VDAC fault detection
VGEN1FAULT	11	R	NONE	S	VGEN1 fault detection
VGEN2FAULT	12	R	NONE	S	VGEN2 fault detection
Unused	13-22	R		0	Not available
REGSCPEN	23	R/W	RESETB	0	Register short-circuit protect enable. This bit should be set to 1 to reduce power dissipation on the external pass LDOs (VUSB2, VGEN2, and VDAC). When a short-circuit condition is detected, the LDO's VxEN bit is set to 0, disabling the LDO and an SCPI interrupt will be generated

Table 91. Register 8, Regulator Fault Sense

Back to SPI/I2C Register Map

Table 92. Register 9, Reserved

Name	Bit #	R/W	Reset	Default	Description
Reserved	23-0	R	-	-	Reserved

Table 93. Register 10 to 12, Unused

Name	Bit #	R/W	Reset	Default	Description
Reserved	23-0	R	-	-	Reserved

Table 94. Register 13, Power Control 0

Name	Bit #	R/W	Reset	Default	Description
PCEN	0	R/W	RTCPORB	0	Power cut enable
PCCOUNTEN	1	R/W	RTCPORB	0	Power cut counter enable
WARMEN	2	R/W	RTCPORB	0	Warm start enable
USEROFFSPI	3	R/W	RESETB	0	SPI command for entering user off modes
DRM	4	R/W	RTCPORB ⁽⁶⁸⁾	0	Keeps VSRTC and CLK32KMCU on for all states
USEROFFCLK	5	R/W	RTCPORB	0	Keeps the CLK32KMCU active during user off
CLK32KMCUEN	6	R/W	RTCPORB	1	Enables the CLK32KMCU

Table 94. Register 13, Power Control 0

Name	Bit #	R/W	Reset	Default	Description
Unused	8-7	R		0	Not available
PCUTEXPB	9	R/W	RTCPORB	0	PCUTEXPB=1 at a start-up event indicates that PCUT timer did not expire (assuming it was set to 1 after booting)
Unused	18-10	R		0	Not available
Reserved	19	R	-	-	Reserved
VCOIN0	20	R/W	RTCPORB	0	
VCOIN1	21	R/W	RTCPORB	0	Coin cell charger voltage setting
VCOIN2	22	R/W	RTCPORB	0	
COINCHEN	23	R/W	RTCPORB	0	Coin cell charger enable

Notes:

68. Reset by RTCPORB but not during a GLBRST (global reset).

Back to SPI/I2C Register Map

Table 95.	Register 14	, Power Control 1
	Troglotor 14	

Name	Bit #	R/W	Reset	Default	Description
PCT0	0	R/W	RTCPORB	0	
PCT1	1	R/W	RTCPORB	0	-
PCT2	2	R/W	RTCPORB	0	-
PCT3	3	R/W	RTCPORB	0	Power cut timer
PCT4	4	R/W	RTCPORB	0	
PCT5	5	R/W	RTCPORB	0	
PCT6	6	R/W	RTCPORB	0	
PCT7	7	R/W	RTCPORB	0	
PCCOUNT0	8	R/W	RTCPORB	0	
PCCOUNT1	9	R/W	RTCPORB	0	Power cut counter
PCCOUNT2	10	R/W	RTCPORB	0	
PCCOUNT3	11	R/W	RTCPORB	0	
PCMAXCNT0	12	R/W	RTCPORB	0	
PCMAXCNT1	13	R/W	RTCPORB	0	Maximum allowed number of power cuts
PCMAXCNT2	14	R/W	RTCPORB	0	
PCMAXCNT3	15	R/W	RTCPORB	0	
Unused	23-16	R		0	Not available

Table 96. Register 15, Power Control 2

Name	Bit #	R/W	Reset	Default	Description
RESTARTEN	0	R/W	RTCPORB	0	Enables automatic restart after a system reset
PWRON1RSTEN	1	R/W	RTCPORB	0	Enables system reset on PWRON1 pin
PWRON2RSTEN	2	R/W	RTCPORB	0	Enables system reset on PWRON2 pin
Unused	3	R		0	Not available
PWRON1DBNC0	4	R/W	RTCPORB	0	Sets debounce time on PWRON1 pin
PWRON1DBNC1	5	R/W	RTCPORB	0	
PWRON2DBNC0	6	R/W	RTCPORB	0	Sate debauras time on DIMPON2 nin
PWRON2DBNC1	7	R/W	RTCPORB	0	Sets debounce time on PWRON2 pin
GLBRSTTMR0	8	R/W	RTCPORB	1	Sets Global reset time
GLBRSTTMR1	9	R/W	RTCPORB	1	
STANDBYINV	10	R/W	RTCPORB	0	If set then STANDBY is interpreted as active low
Unused	11	R		0	Not available
WDIRESET	12	R/W	RESETB	0	Enables system reset through WDI
SPIDRV0	13	R/W	RTCPORB	1	CDI drive etropeth
SPIDRV1	14	R/W	RTCPORB	0	SPI drive strength
Unused	16-15	R		0	Not available
CLK32KDRV0	17	R/W	RTCPORB	1	
CLK32KDRV1	18	R/W	RTCPORB	0	CLK32K and CLK32KMCU drive strength (master control bits)
Unused	20-19	R		0	Not available
ON_STBY_LP	21	R/W	RESETB	0	On Standby Low-power Mode 0 = Low-power mode disabled 1 = Low-power mode enabled
STBYDLY0	22	R/W	RESETB	1	Standby delay control
STBYDLY1	23	R/W	RESETB	0	Standby delay control

Table 97. Register 16, Memory A

Name	Bit #	R/W	Reset	Default	Description
MEMA0	0	R/W	RTCPORB	0	
MEMA1	1	R/W	RTCPORB	0	
MEMA2	2	R/W	RTCPORB	0	
MEMA3	3	R/W	RTCPORB	0	
MEMA4	4	R/W	RTCPORB	0	
MEMA5	5	R/W	RTCPORB	0	-
MEMA6	6	R/W	RTCPORB	0	-
MEMA7	7	R/W	RTCPORB	0	-
MEMA8	8	R/W	RTCPORB	0	
MEMA9	9	R/W	RTCPORB	0	Backup memory A
MEMA10	10	R/W	RTCPORB	0	-
MEMA11	11	R/W	RTCPORB	0	
MEMA12	12	R/W	RTCPORB	0	
MEMA13	13	R/W	RTCPORB	0	
MEMA14	14	R/W	RTCPORB	0	
MEMA15	15	R/W	RTCPORB	0	
MEMA16	16	R/W	RTCPORB	0	-
MEMA17	17	R/W	RTCPORB	0	
MEMA18	18	R/W	RTCPORB	0	
MEMA19	19	R/W	RTCPORB	0	
MEMA20	20	R/W	RTCPORB	0	
MEMA21	21	R/W	RTCPORB	0	Backup memory A
MEMA22	22	R/W	RTCPORB	0	
MEMA23	23	R/W	RTCPORB	0	-

Table 98. Register 17, Memory B

Name	Bit #	R/W	Reset	Default	Description
MEMB0	0	R/W	RTCPORB	0	
MEMB1	1	R/W	RTCPORB	0	
MEMB2	2	R/W	RTCPORB	0	-
MEMB3	3	R/W	RTCPORB	0	-
MEMB4	4	R/W	RTCPORB	0	-
MEMB5	5	R/W	RTCPORB	0	-
MEMB6	6	R/W	RTCPORB	0	-
MEMB7	7	R/W	RTCPORB	0	-
MEMB8	8	R/W	RTCPORB	0	
MEMB9	9	R/W	RTCPORB	0	
MEMB10	10	R/W	RTCPORB	0	
MEMB11	11	R/W	RTCPORB	0	Backup memory B
MEMB12	12	R/W	RTCPORB	0	
MEMB13	13	R/W	RTCPORB	0	
MEMB14	14	R/W	RTCPORB	0	
MEMB15	15	R/W	RTCPORB	0	
MEMB16	16	R/W	RTCPORB	0	
MEMB17	17	R/W	RTCPORB	0	
MEMB18	18	R/W	RTCPORB	0	-
MEMB19	19	R/W	RTCPORB	0	-
MEMB20	20	R/W	RTCPORB	0	
MEMB21	21	R/W	RTCPORB	0	
MEMB22	22	R/W	RTCPORB	0	
MEMB23	23	R/W	RTCPORB	0	

Table 99. Register 18, Memory C

Name	Bit #	R/W	Reset	Default	Description
MEMC0	0	R/W	RTCPORB	0	
MEMC1	1	R/W	RTCPORB	0	
MEMC2	2	R/W	RTCPORB	0	
MEMC3	3	R/W	RTCPORB	0	
MEMC4	4	R/W	RTCPORB	0	
MEMC5	5	R/W	RTCPORB	0	
MEMC6	6	R/W	RTCPORB	0	
MEMC7	7	R/W	RTCPORB	0	
MEMC8	8	R/W	RTCPORB	0	-
MEMC9	9	R/W	RTCPORB	0	-
MEMC10	10	R/W	RTCPORB	0	-
MEMC11	11	R/W	RTCPORB	0	Backup memory C
MEMC12	12	R/W	RTCPORB	0	
MEMC13	13	R/W	RTCPORB	0	-
MEMC14	14	R/W	RTCPORB	0	-
MEMC15	15	R/W	RTCPORB	0	-
MEMC16	16	R/W	RTCPORB	0	-
MEMC17	17	R/W	RTCPORB	0	-
MEMC18	18	R/W	RTCPORB	0	-
MEMC19	19	R/W	RTCPORB	0	
MEMC20	20	R/W	RTCPORB	0	
MEMC21	21	R/W	RTCPORB	0	
MEMC22	22	R/W	RTCPORB	0	
MEMC23	23	R/W	RTCPORB	0	

Table 100. Register 19, Memory D

Name	Bit #	R/W	Reset	Default	Description
MEMD0	0	R/W	RTCPORB	0	
MEMD1	1	R/W	RTCPORB	0	
MEMD2	2	R/W	RTCPORB	0	
MEMD3	3	R/W	RTCPORB	0	
MEMD4	4	R/W	RTCPORB	0	Backup memory D
MEMD5	5	R/W	RTCPORB	0	
MEMD6	6	R/W	RTCPORB	0	-
MEMD7	7	R/W	RTCPORB	0	-
MEMD8	8	R/W	RTCPORB	0	
MEMD9	9	R/W	RTCPORB	0	
MEMD10	10	R/W	RTCPORB	0	
MEMD11	11	R/W	RTCPORB	0	
MEMD12	12	R/W	RTCPORB	0	
MEMD13	13	R/W	RTCPORB	0	
MEMD14	14	R/W	RTCPORB	0	
MEMD15	15	R/W	RTCPORB	0	
MEMD16	16	R/W	RTCPORB	0	Backup memory D
MEMD17	17	R/W	RTCPORB	0	Васкир пенногу В
MEMD18	18	R/W	RTCPORB	0	
MEMD19	19	R/W	RTCPORB	0	
MEMD20	20	R/W	RTCPORB	0	
MEMD21	21	R/W	RTCPORB	0	
MEMD22	22	R/W	RTCPORB	0	
MEMD23	23	R/W	RTCPORB	0	

Table 101. Register 20, RTC Time

Name	Bit #	R/W	Reset	Default	Description	
TOD0	0	R/W	RTCPORB (69)	0		
TOD1	1	R/W	RTCPORB (69)	0	-	
TOD2	2	R/W	RTCPORB (69)	0		
TOD3	3	R/W	RTCPORB (69)	0	•	
TOD4	4	R/W	RTCPORB (69)	0	•	
TOD5	5	R/W	RTCPORB (69)	0	•	
TOD6	6	R/W	RTCPORB (69)	0	•	
TOD7	7	R/W	RTCPORB (69)	0	•	
TOD8	8	R/W	RTCPORB (69)	0	Time of day counter	
TOD9	9	R/W	RTCPORB (69)	0		
TOD10	10	R/W	RTCPORB (69)	0		
TOD11	11	R/W	RTCPORB (69)	0		
TOD12	12	R/W	RTCPORB (69)	0		
TOD13	13	R/W	RTCPORB (69)	0		
TOD14	14	R/W	RTCPORB (69)	0		
TOD15	15	R/W	RTCPORB (69)	0		
TOD16	16	R/W	RTCPORB (69)	0		
RTCCAL0	17	R/W	RTCPORB (69)	0		
RTCCAL1	18	R/W	RTCPORB (69)	0		
RTCCAL2	19	R/W	RTCPORB (69)	0	RTC calibration count	
RTCCAL3	20	R/W	RTCPORB (69)	0		
RTCCAL4	21	R/W	RTCPORB (69)	0		
RTCCALMODE0	22	R/W	RTCPORB (69)	0	RTC calibration mode	
RTCCALMODE1	23	R/W	RTCPORB (69)	0		

Notes

69. Reset by RTCPORB but not during a GLBRST (global reset) Back to SPI/I2C Register Map

Table 102.	Register 21,	RTC Alarm
------------	--------------	-----------

Name	Bit #	R/W	Reset	Default	Description
TODA0	0	R/W	RTCPORB (70)	1	
TODA1	1	R/W	RTCPORB (70)	1	-
TODA2	2	R/W	RTCPORB (70)	1	
TODA3	3	R/W	RTCPORB (70)	1	
TODA4	4	R/W	RTCPORB (70)	1	
TODA5	5	R/W	RTCPORB (70)	1	
TODA6	6	R/W	RTCPORB (70)	1	-
TODA7	7	R/W	RTCPORB (70)	1	
TODA8	8	R/W	RTCPORB (70)	1	Time of day alarm
TODA9	9	R/W	RTCPORB (70)	1	
TODA10	10	R/W	RTCPORB (70)	1	
TODA11	11	R/W	RTCPORB (70)	1	-
TODA12	12	R/W	RTCPORB (70)	1	
TODA13	13	R/W	RTCPORB (70)	1	
TODA14	14	R/W	RTCPORB (70)	1	
TODA15	15	R/W	RTCPORB (70)	1	
TODA16	16	R/W	RTCPORB (70)	1	
Unused	17- 22	R		0	Not available
RTCDIS	23	R/W	RTCPORB (70)	0	Disable RTC

Notes

70. Reset by RTCPORB but not during a GLBRST (global reset) Back to SPI/I2C Register Map

Table 103. Register 22, RTC Day

Name	Bit #	R/W	Reset	Default	Description
DAY0	0	R/W	RTCPORB (71)	0	
DAY1	1	R/W	RTCPORB (71)	0	
DAY2	2	R/W	RTCPORB (71)	0	-
DAY3	3	R/W	RTCPORB (71)	0	-
DAY4	4	R/W	RTCPORB (71)	0	-
DAY5	5	R/W	RTCPORB (71)	0	-
DAY6	6	R/W	RTCPORB (71)	0	-
DAY7	7	R/W	RTCPORB (71)	0	Day counter
DAY8	8	R/W	RTCPORB (71)	0	-
DAY9	9	R/W	RTCPORB (71)	0	-
DAY10	10	R/W	RTCPORB (71)	0	
DAY11	11	R/W	RTCPORB (71)	0	-
DAY12	12	R/W	RTCPORB (71)	0	-
DAY13	13	R/W	RTCPORB (71)	0	
DAY14	14	R/W	RTCPORB (71)	0	
Unused	15 - 23	R		0	Not available

Notes

71. Reset by RTCPORB but not during a GLBRST (global reset) Back to SPI/I2C Register Map

Name	Bit #	R/W	Reset	Default	Description
DAYA0	0	R/W	RTCPORB (72)	1	
DAYA1	1	R/W	RTCPORB (72)	1	-
DAYA2	2	R/W	RTCPORB (72)	1	-
DAYA3	3	R/W	RTCPORB (72)	1	-
DAYA4	4	R/W	RTCPORB (72)	1	-
DAYA5	5	R/W	RTCPORB (72)	1	-
DAYA6	6	R/W	RTCPORB (72)	1	-
DAYA7	7	R/W	RTCPORB (72)	1	Day alarm
DAYA8	8	R/W	RTCPORB (72)	1	-
DAYA9	9	R/W	RTCPORB (72)	1	-
DAYA10	10	R/W	RTCPORB (72)	1	-
DAYA11	11	R/W	RTCPORB (72)	1	
DAYA12	12	R/W	RTCPORB (72)	1	
DAYA13	13	R/W	RTCPORB (72)	1	
DAYA14	14	R/W	RTCPORB (72)	1	
Unused	15 - 23	R		0	Not available

Table 104. Register 23, RTC Day Alarm

Notes

72. Reset by RTCPORB but not during a GLBRST (global reset) Back to SPI/I2C Register Map

Name	Bit #	R/W	Reset	Default	Description
SW1A0	0	R/WM	NONE	*	
SW1A1	1	R/WM	NONE	*	
SW1A2	2	R/WM	NONE	*	- SW1 setting in normal mode
SW1A3	3	R/WM	NONE	*	
SW1A4	4	R/WM	NONE	*	
SW1A5	5	R/WM	NONE	*	
SW1ASTBY0	6	R/WM	NONE	*	
SW1ASTBY1	7	R/WM	NONE	*	
SW1ASTBY2	8	R/WM	NONE	*	- SW1 setting in Standby mode
SW1ASTBY3	9	R/WM	NONE	*	
SW1ASTBY4	10	R/WM	NONE	*	
SW1ASTBY5	11	R/WM	NONE	*	
Reserved	12 - 23	R	-	-	Reserved

Table 105. Register 24, Regulator 1A/B Voltage

Table 106.	Register 25, Regulator 2 & 3 Voltage
------------	--------------------------------------

Name	Bit #	R/W	Reset	Default	Description
SW20	0	R/WM	NONE	*	
SW21	1	R/WM	NONE	*	
SW22	2	R/WM	NONE	*	SW2 setting in normal mode
SW23	3	R/WM	NONE	*	
SW24	4	R/WM	NONE	*	
SW25	5	R/WM	NONE	*	
SW2STBY0	6	R/WM	NONE	*	
SW2STBY1	7	R/WM	NONE	*	
SW2STBY2	8	R/WM	NONE	*	SW2 setting in Standby mode
SW2STBY3	9	R/WM	NONE	*	
SW2STBY4	10	R/WM	NONE	*	
SW2STBY5	11	R/WM	NONE	*	
SW30	12	R/WM	NONE	*	
SW31	13	R/WM	NONE	*	
SW32	14	R/WM	NONE	*	SW3 setting in normal mode
SW33	15	R/WM	NONE	*	
SW34	16	R/WM	NONE	*	
Unused	17	R		0	Not available
SW3STBY0	18	R/WM	NONE	*	
SW3STBY1	19	R/WM	NONE	*	
SW3STBY2	20	R/WM	NONE	*	SW3 setting in standby mode
SW3STBY3	21	R/WM	NONE	*	
SW3STBY4	22	R/WM	NONE	*	
Unused	23	R		0	Not available

Back to SPI/I2C Register Map

Table 107. Register 26, REgulator 4A/B

Name	Bit #	R/W	Reset	Default	Description
SW4A0	0	R/WM	NONE	*	
SW4A1	1	R/WM	NONE	*	-
SW4A2	2	R/WM	NONE	*	SW4A setting in normal mode
SW4A3	3	R/WM	NONE	*	
SW4A4	4	R/WM	NONE	*	

Name	Bit #	R/W	Reset	Default	Description
SW4ASTBY0	5	R/WM	NONE	*	
SW4ASTBY1	6	R/WM	NONE	*	-
SW4ASTBY2	7	R/WM	NONE	*	SW4A setting in Standby mode
SW4ASTBY3	8	R/WM	NONE	*	-
SW4ASTBY4	9	R/WM	NONE	*	-
SW4AHI0	10	R/WM	NONE	*	SW4A high setting
SW4AHI1	11	R/WM	NONE	*	SW4A mgn setting
SW4B0	12	R/WM	NONE	*	
SW4B1	13	R/WM	NONE	*	
SW4B2	14	R/WM	NONE	*	SW4B setting in normal mode
SW4B3	15	R/WM	NONE	*	
SW4B4	16	R/WM	RESETB	*	
SW4BSTBY0	17	R/WM	RESETB	*	
SW4BSTBY1	18	R/WM	RESETB	*	
SW4BSTBY2	19	R/WM	RESETB	*	SW4B setting in Standby mode
SW4BSTBY3	20	R/WM	RESETB	*	
SW4BSTBY4	21	R/WM	RESETB	*	
SW4BHI0	22	R/WM	RESETB	*	SW4B high setting
SW4BHI1	23	R/WM	RESETB	*	
Back to SPI/I2C Registe					

Table 107. Register 26, REgulator 4A/B

Back to SPI/I2C Register Map

Table 108. Register 27, REgulator 5 Voltage

Name	Bit #	R/W	Reset	Default	Description
SW50	0	R/WM	NONE	*	
SW51	1	R/WM	NONE	*	
SW52	2	R/WM	NONE	*	SW4 setting in normal mode
SW53	3	R/WM	NONE	*	
SW54	4	R/WM	NONE	*	
Unused	5-9	R		*	Not available
SW5STBY0	10	R/WM	NONE	*	
SW5STBY1	11	R/WM	NONE	*	
SW5STBY2	12	R/WM	NONE	*	SW5 setting in Standby mode
SW5STBY3	13	R/WM	NONE	*	
SW5STBY4	14	R/WM	NONE	*	
Unused	15-23	R		0	Not available

Name	Bit #	R/W	Reset	Default	Description
SW1AMODE0	0	R/W	RESETB	0	
SW1AMODE1	1	R/W	RESETB	0	SW1A operating mode
SW1AMODE2	2	R/W	RESETB	0	
SW1AMODE3	3	R/W	RESETB	1	
SW1AMHMODE	4	R/W	OFFB	0	SW1A Memory Hold mode
SW1AUOMODE	5	R/W	OFFB	0	SW1A User Off mode
SW1DVSSPEED0	6	R/W	RESETB	1	SW1 DVS1 speed
SW1DVSSPEED1	7	R/W	RESETB	0	- SWI DVSI speed
Unused	8 - 13	R		0	Not available
SW2MODE0 ⁽⁷³⁾	14	R/W	RESETB	0	SW2 operating mode
SW2MODE1 ⁽⁷³⁾	15	R/W	RESETB	0	
SW2MODE2 ⁽⁷³⁾	16	R/W	RESETB	0	
SW2MODE3 ⁽⁷³⁾	17	R/W	RESETB	1	
SW2MHMODE	18	R/W	OFFB	0	SW2 Memory Hold mode
SW2UOMODE	19	R/W	OFFB	0	SW2 User Off mode
SW2DVSSPEED0	20	R/W	RESETB	1	SW2 DVS1 speed
SW2DVSSPEED1	21	R/W	RESETB	0	
PLLEN	22	R/W	RESETB	1	PLL enable
PLLX	23	R/W	RESETB	0	PLL multiplication factor

Table 109.	Register 28	, Regulators	1 & 2	Operating Mode
------------	-------------	--------------	-------	-----------------------

Notes

73. SWxMODE[3:0] bits will be reset to their default values by the start-up sequencer, based on PUMS settings. On start-up all switching regulators will default to APS mode for both Normal and Standby operation.

Back to SPI/I2C Register Map

Table 110.	Register 29, Regulators 3, 4, and 5 Operating Mode	е
------------	--	---

Name	Bit #	R/W	Reset	Default	Description
SW3MODE0	0	R/W	RESETB	0	
SW3MODE1	1	R/W	RESETB	0	SW3 operating mode
SW3MODE2	2	R/W	RESETB	0	
SW3MODE3	3	R/W	RESETB	1	
SW3MHMODE	4	R/W	OFFB	0	SW3 Memory Hold mode
SW3UOMODE	5	R/W	OFFB	0	SW3 User Off mode
SW4AMODE0	6	R/W	RESETB	0	
SW4AMODE1	7	R/W	RESETB	0	SW4A operating mode
SW4AMODE2	8	R/W	RESETB	0	
SW4AMODE3	9	R/W	RESETB	1	
SW4AMHMODE	10	R/W	OFFB	0	SW4A Memory Hold mode
SW4AUOMODE	11	R/W	OFFB	0	SW4A User Off mode

34709

SW4BMODE0	12	R/W	RESETB	0	
SW4BMODE1	13	R/W	RESETB	0	SW4B operating mode
SW4BMODE2	14	R/W	RESETB	0	
SW4BMODE3	15	R/W	RESETB	1	
SW4BMHMODE	16	R/W	OFFB	0	SW4B Memory Hold mode
SW4BUOMODE	17	R/W	OFFB	0	SW4B User Off mode
SW5MODE0 ⁽⁷⁴⁾	18	R/W	RESETB	0	
SW5MODE1 ⁽⁷⁴⁾	19	R/W	RESETB	0	SW5 operating mode
SW5MODE2 ⁽⁷⁴⁾	20	R/W	RESETB	0	
SW5MODE3 ⁽⁷⁴⁾	21	R/W	RESETB	1	
SW5MHMODE	22	R/W	OFFB	0	SW5 Memory Hold mode
SW5UOMODE	23	R/W	OFFB	0	SW5 User Off mode

Table 110. Register 29, Regulators 3, 4, and 5 Operating Mode

Notes

74. SWxMODE[3:0] bits will be reset to their default values by the start-up sequencer, based on PUMS settings. On start-up all switching regulators will default to APS mode for both Normal and Standby operation.

Back to SPI/I2C Register Map

Table 111. Register 30, Regulator Setting 0

Name	Bit #	R/W	Reset	Default	Description
VGEN10	0	R/WM	RESETB	*	
VGEN11	1	R/WM	RESETB	*	VGEN1 setting
VGEN12	2	R/WM	RESETB	*	-
Unused	3	R		0	Not available
VDAC0	4	R/WM	RESETB	*	VDAC setting
VDAC1	5	R/WM	RESETB	*	VDAC setting
VGEN20	6	R/WM	RESETB	*	
VGEN21	7	R/WM	RESETB	*	VGEN2 setting
VGEN22	8	R/WM	RESETB	*	-
VPLL0	9	R/WM	RESETB	*	VPLL setting
VPLL1	10	R/WM	RESETB	*	VFLL Setting
VUSB20	11	R/WM	RESETB	*	VUSB2 setting
VUSB21	12	R/WM	RESETB	*	VUSD2 Seturing
Unused	13 -23	R		0	Not available

Name	Bit #	R/W	Reset	Default	Description
SWBST0	0	R/W	NONE	*	SWBST setting
SWBST1	1	R/W	NONE	*	
SWBSTMODE0	2	R/W	RESETB	0	SWBST mode
SWBSTMODE1	3	R/W	RESETB	1	
Spare	4	R/W	RESETB	0	Not available
SWBSTSTBYMODE0	5	R/W	RESETB	0	SWBST standby mode
SWBSTSTBYMODE1	6	R/W	RESETB	1	
Spare	7	R/W	RESETB	0	Not available
Unused	8 - 23	R		0	Not available

Table 112. Register 31, SWBST Control

Back to SPI/I2C Register Map

Table 113. Register 32, Regulator Mode 0

Name	Bit #	R/W	Reset	Default	Description
VGEN1EN	0	R/W	NONE	*	VGEN1 enable
VGEN1STBY	1	R/W	RESETB	0	VGEN1 controlled by standby
Unused	2	R		0	Not available
VUSBEN	3	R/W	RESETB	1	VUSB enable (PUMS4:1=[0100]).
VDACEN	4	R/W	NONE	*	VDAC enable
VDACSTBY	5	R/W	RESETB	0	VDAC controlled by standby
VDACMODE	6	R/W	RESETB	0	VDAC operating mode
Unused	9-7	R		0	Not available
VREFDDREN	10	R/W	NONE	*	VREFDDR enable
VGEN2CONFIG	11	R/W	NONE	*	PUMS5 Tied to ground = 0: VGEN2 with external PNP PUMS5 Tied to VCROREDIG =1:VGEN2 internal PMOS
VGEN2EN	12	R/W	NONE	*	VGEN2 enable
VGEN2STBY	13	R/W	RESETB	0	VGEN2 controlled by standby
VGEN2MODE	14	R/W	RESETB	0	VGEN2 operating mode
VPLLEN	15	R/W	NONE	*	VPLL enable
VPLLSTBY	16	R/W	RESETB	0	VPLL controlled by standby
VUSB2CONFIG	17	R/W	NONE	*	PUMS5 Tied to ground = 0: VUSB2 with external PNP PUMS5 Tied to VCROREDIG =1:VUSB2 internal PMOS
VUSB2EN	18	R/W	NONE	*	VUSB2 enable
VUSB2STBY	19	R/W	RESETB	0	VUSB2 controlled by standby
VUSB2MODE	20	R/W	RESETB	0	VUSB2 operating mode
Unused	23-21	R		0	Not available

Table 114. Register 33, GPIOLV0 Control

Name	Bit #	R/W	Reset	Default	Description
DIR	0	R/W	RESETB	0	GPIOLV0 direction 0: Input 1: Output
DIN	1	R/W	RESETB	0	Input state of GPIOLV0 pin 0: Input low 1: Input High
DOUT	2	R/W	RESETB	0	Output state of GPIOLV0 pin 0: Output Low 1: Output High
HYS	3	R/W	RESETB	1	Hysteresis 0: CMOS in 1: Hysteresis
DBNC0	4	R/W	RESETB	0	GPIOLV0 input debounce time
DBNC1	5	R/W	RESETB	0	00: no debounce 01: 10 ms debounce 10: 20 ms debounce 11: 30 mS debounce
INT0	6	R/W	RESETB	0	GPIOLV0 interrupt control
INT1	7	R/W	RESETB	0	00: None 01: Falling edge 10: Rising edge 11: Both edges
PKE	8	R/W	RESETB	0	Pad keep enable 0: Off 1: On
ODE	9	R/W	RESETB	0	Open-drain enable 0: CMOS 1: OD
DSE	10	R/W	RESETB	0	Drive strength enable 0: 4.0 mA 1: 8.0 mA
PUE	11	R/W	RESETB	1	Pull-up/down enable 0: pull-up/down off 1: pull-up/down on (default)
PUS0	12	R/W	RESETB	1	Pull-up/Pull-down select
PUS1	13	R/W	RESETB	1	00: 10 K pull-down 01: 100 K pull-down 10: 10 K pull-up 11: 100 K pull-up
SRE0	14	R/W	RESETB	0	Slew rate enable
SRE1	15	R/W	RESETB	0	00: slow (default) 01: normal 10: fast 11: very fast
Unused	16 - 23	R		0	Not available

Table 115. Register 34, GPIOLV1 Control

Name	Bit #	R/W	Reset	Default	Description
DIR	0	R/W	RESETB	0	GPIOLV1directon 0: Input 1: Output
DIN	1	R/W	RESETB	0	Input state of GPIOLV1 pin 0: Input low 1: Input High
DOUT	2	R/W	RESETB	0	Output state of GPIOLV1 pin 0: Output Low 1: Output High
HYS	3	R/W	RESETB	1	Hysteresis 0: CMOS in 1: Hysteresis
DBNC0	4	R/W	RESETB	0	GPIOLV1 input debounce time
DBNC1	5	R/W	RESETB	0	00: no debounce 01: 10 ms debounce 10: 20 ms debounce 11: 30 mS debounce
INT0	6	R/W	RESETB	0	GPIOLV1 interrupt control
INT1	7	R/W	RESETB	0	00: None 01: Falling edge 10: Rising edge 11: Both edges
PKE	8	R/W	RESETB	0	Pad keep enable 0: Off 1: On
ODE	9	R/W	RESETB	0	Open-drain enable 0: CMOS 1: OD
DSE	10	R/W	RESETB	0	Drive strength enable 0: 4.0 mA 1: 8.0 mA
PUE	11	R/W	RESETB	1	Pull-up/down enable 0: pull-up/down off 1: pull-up/down on (default)
PUS0	12	R/W	RESETB	1	Pull-up/Pull-down select
PUS1	13	R/W	RESETB	1	00: 10 K pull-down 01: 100 K pull-down 10: 10 K pull-up 11: 100 K pull-up
SRE0	14	R/W	RESETB	0	Slew rate enable
SRE1	15	R/W	RESETB	0	00: slow (default) 01: normal 10: fast 11: very fast
Unused	16 - 23	R		0	Not available

Table 116. Register 35, GPIOLV2 Control

Name	Bit #	R/W	Reset	Default	Description
DIR	0	R/W	RESETB	0	GPIOLV2 direction 0: Input 1: Output
DIN	1	R/W	RESETB	0	Input state of GPIOLV2 pin 0: Input low 1: Input High
DOUT	2	R/W	RESETB	0	Output state of GPIOLV2 pin 0: Output Low 1: Output High
HYS	3	R/W	RESETB	1	Hysteresis 0: CMOS in 1: Hysteresis
DBNC0	4	R/W	RESETB	0	GPIOLV2 input debounce time
DBNC1	5	R/W	RESETB	0	00: no debounce 01: 10 ms debounce 10: 20 ms debounce 11: 30 mS debounce
INT0	6	R/W	RESETB	0	GPIOLV2 interrupt control
INT1	7	R/W	RESETB	0	00: None 01: Falling edge 10: Rising edge 11: Both edges
PKE	8	R/W	RESETB	0	Pad keep enable 0: Off 1: On
ODE	9	R/W	RESETB	0	Open-drain enable 0: CMOS 1: OD
DSE	10	R/W	RESETB	0	Drive strength enable 0: 4.0 mA 1: 8.0 mA
PUE	11	R/W	RESETB	1	Pull-up/down enable 0: pull-up/down off 1: pull-up/down on (default)
PUS0	12	R/W	RESETB	1	Pull-up/Pull-down select
PUS1	13	R/W	RESETB	1	00: 10 K pull-down 01: 100 K pull-down 10: 10 K pull-up 11: 100 K pull-up
SRE0	14	R/W	RESETB	0	Slew rate enable
SRE1	15	R/W	RESETB	0	00: slow (default) 01: normal 10: fast 11: very fast
Unused	16 - 23	R		0	Not available

Table 117. Register 36, GPIOLV3 Control

Name	Bit #	R/W	Reset	Default	Description
DIR	0	R/W	RESETB	0	GPIOLV3 direction 0: Input 1: Output
DIN	1	R/W	RESETB	0	Input state of GPIOLV3 pin 0: Input low 1: Input High
DOUT	2	R/W	RESETB	0	Output state of GPIOLV3 pin 0: Output Low 1: Output High
HYS	3	R/W	RESETB	1	Hysteresis 0: CMOS in 1: Hysteresis
DBNC0	4	R/W	RESETB	0	GPIOLV3 input debounce time
DBNC1	5	R/W	RESETB	0	00: no debounce 01: 10 ms debounce 10: 20 ms debounce 11: 30 mS debounce
INT0	6	R/W	RESETB	0	GPIOLV3 interrupt control
INT1	7	R/W	RESETB	0	00: None 01: Falling edge 10: Rising edge 11: Both edges
PKE	8	R/W	RESETB	0	Pad keep enable 0: Off 1: On
ODE	9	R/W	RESETB	0	Open-drain enable 0: CMOS 1: OD
DSE	10	R/W	RESETB	0	Drive strength enable 0: 4.0 mA 1: 8.0 mA
PUE	11	R/W	RESETB	1	Pull-up/down enable 0: pull-up/down off 1: pull-up/down on (default)
PUS0	12	R/W	RESETB	1	Pull-up/Pull-down select
PUS1	13	R/W	RESETB	1	00: 10 K pull-down 01: 100 K pull-down 10: 10 K pull-up 11: 100 K pull-up
SRE0	14	R/W	RESETB	0	Slew rate enable
SRE1	15	R/W	RESETB	0	00: slow (default) 01: normal 10: fast 11: very fast
Unused	16 - 23	R		0	Not available

Table 118. Register 37 - 40, Reserved

Name	Bit #	R/W	Reset	Default	Description
Unused	0 - 23	R		0	Not available

Table 119. Register 41 - 42, Unused

Name	Bit #	R/W	Reset	Default	Description
Unused	0-23	R		0	Not available

Table 120. Register 43, ADC 0

Name	Bit #	R/W	Reset	Default	Description
ADEN	0	R/W	DIGRESETB	0	Enables ADC from the low-power mode
ADSTART	1	R/W	DIGRESETB	0	Request a start of the ADC Reading Sequencer
ADCONT	2	R/W	DIGRESETB	0	Run ADC reads continuously when high or one time when low. Note that the TSSTART request will have higher priority
ADHOLD	3	R/W	DIGRESETB	0	Hold the ADC reading Sequencer while saved ADC results are read from SPI
ADSTOP0	4	R/W	DIGRESETB	0	
ADSTOP1	5	R/W	DIGRESETB	0	Channel Selection to stop when complete. Always start at 000 and read up to and including this channel value.
ADSTOP2	6	R/W	DIGRESETB	0	
Spare	7	R/W	DIGRESETB	0	Not available
THERM	8	R/W	DIGRESETB	0	0: NTCREF not forced on 1: Force NTCREF on
Spare	11-9	R/W	DIGRESETB	0	Not available
TSEN	12	R/W	DIGRESETB	0	Enable the touch screen from low-power mode.
TSSTART	13	R/W	DIGRESETB	0	Request a start of the ADC Reading Sequencer for touch screen readings.
TSCONT	14	R/W	DIGRESETB	0	Run ADC reads of touch screen continuously when high or one time when low.
TSHOLD	15	R/W	DIGRESETB	0	Hold the ADC reading Sequencer while saved touch screen results are read from SPI
TSSTOP0	16	R/W	DIGRESETB	0	Just like the ADSTOP above, but for the touch screen read
TSSTOP1	17	R/W	DIGRESETB	0	programming. This will allow independent code for ADC Sequence
TSSTOP2	18	R/W	DIGRESETB	0	readings and touch screen ADC Sequence readings.
Spare	19	R/W	DIGRESETB	0	Not available
TSPENDETEN	20	R/W	DIGRESETB	0	Enable the touch screen Pen Detection. Note that TSEN must be off for Pen Detection.
Spare	23-21	R/W	DIGRESETB	0	Not available

Table 121. Register 44, ADC 1

Name	Bit #	R/W	Reset	Default	Description
ADDLY10	0	R/W	DIGRESETB	0	
ADDLY11	1	R/W	DIGRESETB	0	This will allow delay before the ADC readings.
ADDLY12	2	R/W	DIGRESETB	0	This will allow delay before the ADC readings.
ADDLY13	3	R/W	DIGRESETB	0	
ADDLY20	4	R/W	DIGRESETB	0	
ADDLY21	5	R/W	DIGRESETB	0	This will allow delay between each of ADC readings in a set.
ADDLY22	6	R/W	DIGRESETB	0	
ADDLY23	7	R/W	DIGRESETB	0	-
ADDLY30	8	R/W	DIGRESETB	0	
ADDLY31	9	R/W	DIGRESETB	0	This will allow delay after the set of ADC readings. This delay is only valid between subsequent wrap around reading sequences with
ADDLY32	10	R/W	DIGRESETB	0	ADCONT
ADDLY33	11	R/W	DIGRESETB	0	
TSDLY10	12	R/W	DIGRESETB	0	This will allow delay before the ADC touch screen readings. This is like
TSDLY11	13	R/W	DIGRESETB	0	the ADDLY1, but allows independent programming of touch screen
TSDLY12	14	R/W	DIGRESETB	0	readings from general purpose ADC readings to prevent code replacement in the system.
TSDLY13	15	R/W	DIGRESETB	0	
TSDLY20	16	R/W	DIGRESETB	0	This will allow delay between each of ADC touch screen readings in a
TSDLY21	17	R/W	DIGRESETB	0	set. This is like the ADDLY2, but allows independent programming of
TSDLY21	18	R/W	DIGRESETB	0	touch screen readings from general purpose ADC readings to prevent code replacement in the system.
TSDLY23	19	R/W	DIGRESETB	0	
TSDLY30	20	R/W	DIGRESETB	0	This will allow delay after the set of ADC touch screen readings. This
TSDLY31	21	R/W	DIGRESETB	0	delay is only valid between subsequent wrap around reading sequences with TSCONT mode. This is like the ADDLY3, but allows
TSDLY31	22	R/W	DIGRESETB	0	independent programming of touch screen readings from general
TSDLY33	23	R/W	DIGRESETB	0	purpose ADC readings to prevent code replacement in the system.

Back to SPI/I2C Register Map

Table 122. Register 45, ADC 2

Name	Bit #	R/W	Reset	Default	Description
ADSEL00	0	R/W	DIGRESETB	0	
ADSEL01	1	R/W	DIGRESETB	0	Channel Selection to place in ADRESULT0
ADSEL02	2	R/W	DIGRESETB	0	
ADSEL03	3	R/W	DIGRESETB	0	
ADSEL10	4	R/W	DIGRESETB	0	
ADSEL11	5	R/W	DIGRESETB	0	Channel Selection to place in ADRESULT1
ADSEL12	6	R/W	DIGRESETB	0	
ADSEL13	7	R/W	DIGRESETB	0	

34709

Table	122.	Register	45,	ADC 2
-------	------	----------	-----	-------

Name	Bit #	R/W	Reset	Default	Description
ADSEL20	8	R/W	DIGRESETB	0	
ADSEL21	9	R/W	DIGRESETB	0	Channel Selection to place in ADRESULT2
ADSEL22	10	R/W	DIGRESETB	0	
ADSEL23	11	R/W	DIGRESETB	0	
ADSEL30	12	R/W	DIGRESETB	0	
ADSEL31	13	R/W	DIGRESETB	0	Channel Selection to place in ADRESULT3
ADSEL32	14	R/W	DIGRESETB	0	
ADSEL33	15	R/W	DIGRESETB	0	-
ADSEL40	16	R/W	DIGRESETB	0	
ADSEL41	17	R/W	DIGRESETB	0	Channel Selection to place in ADRESULT4
ADSEL42	18	R/W	DIGRESETB	0	
ADSEL43	19	R/W	DIGRESETB	0	
ADSEL50	20	R/W	DIGRESETB	0	
ADSEL51	21	R/W	DIGRESETB	0	Channel Selection to place in ADRESULT5
ADSEL52	22	R/W	DIGRESETB	0	
ADSEL53	23	R/W	DIGRESETB	0	

Back to SPI/I2C Register Map

Table 123. Register 46, ADC 3

Name	Bit #	R/W	Reset	Default	Description
ADSEL60	0	R/W	DIGRESETB	0	
ADSEL61	1	R/W	DIGRESETB	0	Channel Selection to place in ADRESULT6
ADSEL62	2	R/W	DIGRESETB	0	
ADSEL63	3	R/W	DIGRESETB	0	
ADSEL70	4	R/W	DIGRESETB	0	
ADSEL71	5	R/W	DIGRESETB	0	Channel Selection to place in ADRESULT7
ADSEL72	6	R/W	DIGRESETB	0	
ADSEL73	7	R/W	DIGRESETB	0	
TSSEL00	8	R/W	DIGRESETB	0	Touch screen Selection to place in ADRESULT0.
TSSEL01	9	R/W	DIGRESETB	0	Select the action for the Touch screen; 00 = dummy to discharge TSREF capacitance, 01 = to read X-plate, 10 = to read Y-plate, and 11 = to read Contact.
TSSEL10	10	R/W	DIGRESETB	0	Touch screen Selection to place in ADRESULT1.
TSSEL11	11	R/W	DIGRESETB	0	See TSSEL0 for modes.
TSSEL20	12	R/W	DIGRESETB	0	Touch screen Selection to place in ADRESULT2.
TSSEL21	13	R/W	DIGRESETB	0	See TSSEL0 for modes.
TSSEL30	14	R/W	DIGRESETB	0	Touch screen Selection to place in ADRESULT3.
TSSEL31	15	R/W	DIGRESETB	0	See TSSEL0 for modes.

Table 123. Register 46, ADC 3

Name	Bit #	R/W	Reset	Default	Description
TSSEL40	16	R/W	DIGRESETB	0	Touch screen Selection to place in ADRESULT4.
TSSEL41	17	R/W	DIGRESETB	0	See TSSEL0 for modes.
TSSEL50	18	R/W	DIGRESETB	0	Touch screen Selection to place in ADRESULT5.
TSSEL51	19	R/W	DIGRESETB	0	See TSSEL0 for modes.
TSSEL60	20	R/W	DIGRESETB	0	Touch screen Selection to place in ADRESULT6.
TSSEL61	21	R/W	DIGRESETB	0	See TSSEL0 for modes.
TSSEL70	22	R/W	DIGRESETB	0	Touch screen Selection to place in ADRESULT7.
TSSEL71	23	R/W	DIGRESETB	0	See TSSEL0 for modes.

Back to SPI/I2C Register Map

Table 124. Register 47, ADC 4

Name	Bit #	R/W	Reset	Default	Description
Unused	1-0	R		0	Not available
ADRESULT00	2	R	DIGRESETB	0	
ADRESULT01	3	R	DIGRESETB	0	
ADRESULT02	4	R	DIGRESETB	0	
ADRESULT03	5	R	DIGRESETB	0	
ADRESULT04	6	R	DIGRESETB	0	ADC Result for ADSEL0
ADRESULT05	7	R	DIGRESETB	0	
ADRESULT06	8	R	DIGRESETB	0	
ADRESULT07	9	R	DIGRESETB	0	
ADRESULT08	10	R	DIGRESETB	0	
ADRESULT09	11	R	DIGRESETB	0	
Unused	13-12	R		0	Not available
ADRESULT10	14	R	DIGRESETB	0	
ADRESULT11	15	R	DIGRESETB	0	
ADRESULT12	16	R	DIGRESETB	0	
ADRESULT13	17	R	DIGRESETB	0	
ADRESULT14	18	R	DIGRESETB	0	ADC Result for ADSEL1
ADRESULT15	19	R	DIGRESETB	0	
ADRESULT16	20	R	DIGRESETB	0	
ADRESULT17	21	R	DIGRESETB	0	
ADRESULT18	22	R	DIGRESETB	0	
ADRESULT19	23	R	DIGRESETB	0	

Table 125. Register 48, ADC5

Name	Bit #	R/W	Reset	Default	Description
Unused	1-0	R		0	Not available
ADRESULT20	2	R	DIGRESETB	0	
ADRESULT21	3	R	DIGRESETB	0	
ADRESULT22	4	R	DIGRESETB	0	
ADRESULT23	5	R	DIGRESETB	0	
ADRESULT24	6	R	DIGRESETB	0	ADC Result for ADSEL2
ADRESULT25	7	R	DIGRESETB	0	
ADRESULT26	8	R	DIGRESETB	0	
ADRESULT27	9	R	DIGRESETB	0	
ADRESULT28	10	R	DIGRESETB	0	
ADRESULT29	11	R	DIGRESETB	0	
Unused	13-12	R		0	Not available
ADRESULT30	14	R	DIGRESETB	0	
ADRESULT31	15	R	DIGRESETB	0	
ADRESULT32	16	R	DIGRESETB	0	
ADRESULT33	17	R	DIGRESETB	0	
ADRESULT34	18	R	DIGRESETB	0	ADC Result for ADSEL3
ADRESULT35	19	R	DIGRESETB	0	
ADRESULT36	20	R	DIGRESETB	0	
ADRESULT37	21	R	DIGRESETB	0	
ADRESULT38	22	R	DIGRESETB	0	
ADRESULT39	23	R	DIGRESETB	0	

Table 126. Register 49, ADC6

Name	Bit #	R/W	Reset	Default	Description
Unused	1-0	R		0	Not available
ADRESULT40	2	R	DIGRESETB	0	
ADRESULT41	3	R	DIGRESETB	0	
ADRESULT42	4	R	DIGRESETB	0	
ADRESULT43	5	R	DIGRESETB	0	
ADRESULT44	6	R	DIGRESETB	0	ADC Result for ADSEL4
ADRESULT45	7	R	DIGRESETB	0	
ADRESULT46	8	R	DIGRESETB	0	
ADRESULT47	9	R	DIGRESETB	0	
ADRESULT48	10	R	DIGRESETB	0	
ADRESULT49	11	R	DIGRESETB	0	
Unused	13-12	R		0	Not available
ADRESULT50	14	R	DIGRESETB	0	
ADRESULT51	15	R	DIGRESETB	0	
ADRESULT52	16	R	DIGRESETB	0	
ADRESULT53	17	R	DIGRESETB	0	
ADRESULT54	18	R	DIGRESETB	0	ADC Result for ADSEL5
ADRESULT55	19	R	DIGRESETB	0	
ADRESULT56	20	R	DIGRESETB	0	
ADRESULT57	21	R	DIGRESETB	0	
ADRESULT58	22	R	DIGRESETB	0	
ADRESULT59	23	R	DIGRESETB	0	

Table 127. Register 50, ADC7

Name	Bit #	R/W	Reset	Default	Description
Unused	1-0	R		0	Not available
ADRESULT60	2	R	DIGRESETB	0	
ADRESULT61	3	R	DIGRESETB	0	
ADRESULT62	4	R	DIGRESETB	0	-
ADRESULT63	5	R	DIGRESETB	0	
ADRESULT64	6	R	DIGRESETB	0	ADC Result for ADSEL6
ADRESULT65	7	R	DIGRESETB	0	
ADRESULT66	8	R	DIGRESETB	0	
ADRESULT67	9	R	DIGRESETB	0	
ADRESULT68	10	R	DIGRESETB	0	
ADRESULT69	11	R	DIGRESETB	0	
Unused	13-12	R		0	Not available
ADRESULT70	14	R	DIGRESETB	0	
ADRESULT71	15	R	DIGRESETB	0	
ADRESULT72	16	R	DIGRESETB	0	
ADRESULT73	17	R	DIGRESETB	0	
ADRESULT74	18	R	DIGRESETB	0	ADC Result for ADSEL7
ADRESULT75	19	R	DIGRESETB	0	
ADRESULT76	20	R	DIGRESETB	0	
ADRESULT77	21	R	DIGRESETB	0	
ADRESULT78	22	R	DIGRESETB	0	
ADRESULT79	23	R	DIGRESETB	0	

Back to SPI/I2C Register Map

Table 128. Register 51, Reserved

Name	Bit #	R/W	Reset	Default	Description
Unused	0 - 23	R		0	Not Available

Table 129. Register 52, Supply Debounce

Name	Bit #	R/W	Reset	Default	Description
Reserved	1-0	R	-	-	Reserved
VBATTDB0	2	R/W	RESETB	1	Low input warning (BP) debounce
VBATTDB1	3	R/W	RESETB	1	
Reserved	4 - 23	R	-	-	Reserved

Table 130. Register 53 - 54, Reserved

Name	Bit #	R/W	Reset	Default	Description
Unused	0 - 23	R		0	Not Available

Table 131. Register 55, PWM Control

Name	Bit #	R/W	Reset	Default	Description			
PWM1DUTY0	0	R/W	RESETB	0				
PWM1DUTY1	1	R/W	RESETB	0				
PWM1DUTY2	2	R/W	RESETB	0	PWM1 Duty Cycle			
PWM1DUTY3	3	R/W	RESETB	0				
PWM1DUTY4	4	R/W	RESETB	0	-			
PWM1DUTY5	5	R/W	RESETB	0				
PWMCLKDIV0	6	R/W	RESETB	0				
PWM1CLKDIV1	7	R/W	RESETB	0	-			
PWM1CLKDIV2	8	R/W	RESETB	0	PWM1 Clock Divide Setting			
PWM1CLKDIV3	9	R/W	RESETB	0				
PWM1CLKDIV4	10	R/W	RESETB	0	-			
PWM1CLKDIV5	11	R/W	RESETB	0				
PWM2DUTY0	12	R/W	RESETB	0				
PWM2DUTY1	13	R/W	RESETB	0				
PWM2DUTY2	14	R/W	RESETB	0	PWM2 Duty Cycle			
PWM2DUTY3	15	R/W	RESETB	0				
PWM2DUTY4	16	R/W	RESETB	0				
PWM2DUTY5	17	R/W	RESETB	0				
PWM2CLKDIV0	18	R/W	RESETB	0				
PWM2CLKDIV1	19	R/W	RESETB	0				
PWM2CLKDIV2	20	R/W	RESETB	0	PWM2 Clock Divide Setting			
PWM2CLKDIV3	21	R/W	RESETB	0				
PWM2CLKDIV4	22	R/W	RESETB	0				
PWM2CLKDIV5	23	R/W	RESETB	0	1			

Back to SPI/I2C Register Map

Table 132. Register 56 - 63, Unused

Name	Bit #	R/W	Reset	Default	Description
Unused	0-23	R		0	Not available

34709

8 Typical Applications

Figure 24 gives a typical application diagram of the 34709 PMIC together with its functional components. For details on component references and additional components such as filters, refer to the individual sections.

8.1 Application Diagram

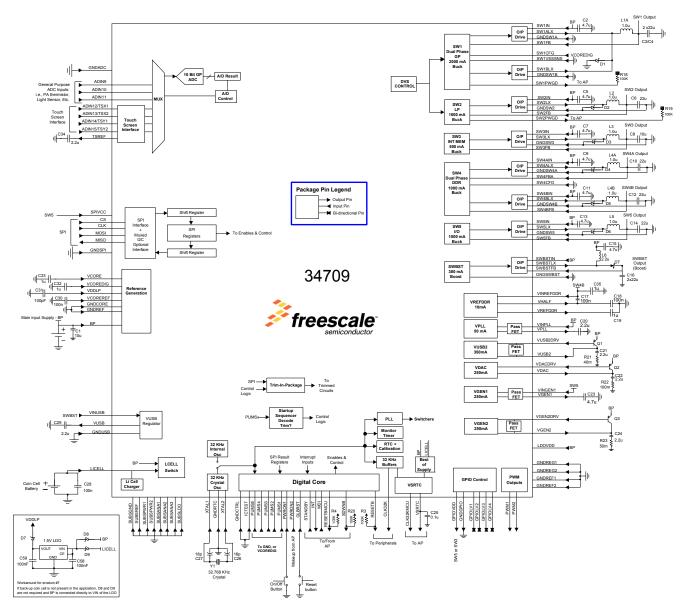


Figure 24. Typical Application Schematic

8.2 Bill of Material

<u>Table 133</u> provides a complete list of the recommended components on a full featured system using the 34709 Device. Critical components such as inductors, transistors, and diodes are provided with a recommended part number, but equivalent components may be used.

Table 133. 34709 Bill of Material (75)

Item	Reference	Quantity	Description	Vendor	Comments		
1	U1	1	34709	Freescale	PMIC		
Battery	Battery/supply input						
2	C1	1	10 μF	TDK	Battery Filter		
Miscel	laneous						
3	C25	1	100 nF		VSRTC		
4	C33	1	1.0 μF		VCORE		
5	C32	1	1.0 μF		VCOREDIG		
6	C31	1	100 pF		VDDLP		
7	C30	1	100 nF		VCOREREF		
8	C34	1	2.2 μF		TSREF		
9	C28	1	100 nF		Coin cell		
10	Y1	1	Crystal 32.768 kHz CC7		Oscillator		
11	C26, C27	2	18 pF		Oscillator load capacitors		
12	R3, R4	2	100 k		RESETB, RESETBMCU Pull-ups		
13	R20	1	100 k		SDWNB Pull-up		

Boost

1	14	L6	1	2.2 μH • LPS3015-222ML	Coilcraft	Boost Inductor
1	15	D7	1	Diode BAS52	Infineon	Boost diode
1	16	C16	2	22 μF 16 V		Boost Output Capacitor
1	17	C15	1	4.7 μF		Boost Input Capacitor

SW1

18	L1A, L1B	2	1.0 μH • VLS201612ET-1R0N	ТDК	Buck 1 Inductor (I _{MAX} < 1.6 Amps) Alternate part numbers: • 1.0 μH VLS252010ET-1R0N (TDK) • 1.0 μH BRL3225T1ROM (Taiyo Yuden) • 1.0 uH LPS4012-102NL (Coilcraft)
19	C3, C4	2	22 μF		Buck 1 Output Capacitor
20	C2	1	4.7 μF		Buck 1 Input Capacitor
21	D1	1	Diode • BAS3010-03LRH	Infineon	SW1LX diode

Table 133. 34709 Bill of Material ⁽⁷⁵⁾

Item	Reference	Quantity	Description	Vendor	Comments
SW2			1]	
22	L2	1	1.0 μH • VLS252010ET-1R0N	ток	Buck 2 Inductor
23	C6	1	22 μF		Buck 2 Output Capacitor
24	C5	1	4.7 μF		Buck 2 Input Capacitor
25	D2	1	Diode • BAS3010-03LRH	Infineon	SW2LX diode
SW3					
26	L3	1	1.0 μH • VLS201612ET-1R0N	ток	Buck 3 Inductor
27	C8	1	10 μF		Buck 3 Output Capacitor
28	C7	1	4.7 μF		Buck 3 Input Capacitor
29	D3	1	Diode • BAS3010-03LRH	Infineon	SW3LX diode
SW4A					
30	L4A	1	1.0 μH • VLS201612ET-1R0N	ток	Buck 4A Inductor Alternate Part number: • 1.0 μH VLS252010ET-1R0N (TDK)
31	C10	1	22 μF		Buck 4A Output Capacitor
32	C9	1	4.7 μF		Buck 4A Input Capacitor
33	D4	1	Diode • BAS3010-03LRH	Infineon	SW4ALX diode
SW4B					·
34	L4B	1	1.0 μH • VLS201612ET-1R0N	ток	Buck 4B Inductor Alternate Part numbers: • 1.0 μH VLS252010ET-1R0N (TDK)
35	C12	1	22 μF		Buck 4B Output Capacitor
36	C11	1	4.7 μF		Buck 4B Input Capacitor
37	D5	1	Diode • BAS3010-03LRH	Infineon	SW4BLX diode
SW5					
38	L5	1	1.0 μH • VLS252010ET-1R0N	ток	Buck 5 Inductor
39	C14	1	22 μF		Buck 5 Output Capacitor
40	C13	1	4.7 μF		Buck 5 Input Capacitor
41	D6	1	Diode • BAS3010-03LRH	Infineon	SW5LX diode

Table 133. 34709 Bill of Material ⁽⁷⁵⁾

Item	Reference	Quantity	Description	Vendor	Comments
VPLL	11				<u> </u>
42	C20	1	2.2 μF		VPLL output capacitor
VREFD	DR				·
43	C18	1	100 nF		VHALF 0.1 µF capacitor
44	C19	1	1.0 μF		VREFDDR output Capacitor
45	C17	1	100 nF		VINREFDDR/VHALF decoupling capacitor
46	C35	1	1.0 μF		VREFDDR input Capacitor
VDAC					
47	Q2	1	PNP NSS12100UW3TCG PNP NSS12100XV6T1G 2SB1733	On Semiconductor On Semiconductor Rohm	VDAC PNP - 500 mW dissipation VDAC PNP - 250 mW dissipation - Alternate VDAC PNP - 500 mW dissipation - Alternate
48	C22	1	2.2 μF		VDAC output Capacitor
49	R21	1	100 mΩ		Connect this resistor in series with the output capacitor to provide an extra series resistance of 100 m Ω for LDO stability.
VUSB2					
50	Q1	1	PNP NSS12100UW3TCG PNP NSS12100XV6T1G 2SB1733	On Semiconductor On Semiconductor Rohm	VDAC PNP - 500 mW dissipation VDAC PNP - 250 mW dissipation - Alternate VDAC PNP - 500 mW dissipation - Alternate
51	C21	1	2.2 μF		VUSB2 output Capacitor
52	R22	1	40 mΩ		Connect this resistor in series with the output capacitor to provide an extra series resistance of 40 m Ω for LDO stability.
VUSB					
53	C29	1	2.2 μF		VUSB output Capacitor
VGEN1					
54	C23	1	4.7 μF		VGEN1 output Capacitor
VGEN2	2				
55	Q3	1	PNP NSS12100UW3TCG PNP NSS12100XV6T1G 2SB1733	On Semiconductor On Semiconductor Rohm	VDAC PNP - 500 mW dissipation VDAC PNP - 250 mW dissipation - Alternate VDAC PNP - 500 mW dissipation - Alternate
56	C24	1	2.2 μF		VGEN2 output Capacitor
57	R23	1	50 mΩ		Connect this resistor in series with the output capacitor to provide an extra series resistance of 50 $m\Omega$ for LDO stability.

Notes

75. Freescale does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings or tables. While Freescale offers component recommendations in this configuration, it is the customer's responsibility to validate their application.

8.3 34709 Layout Guidelines

8.3.1 General board recommendations

- 1. It is recommended to use an 4 layer board stack-up arranged as follows:
- High-current signal
- GND
- Signal
- High-current signal
- 2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high-current signals), copper-pour the unused area.
- 3. Add one GND inner layer to reduce Current loops to the maximum between layers.

8.3.2 General Routing Requirements

- 1. Some recommended things to keep in mind for manufacturability:
- Via in pads require a 4.5 mil Minimum annular ring. Pad must be 9.0 mils larger than the hole
- · Max copper thickness for lines less than 5.0 mils wide is 0.6 oz copper
- · Minimum allowed spacing between line and hole pad is 3.5 mils
- · Minimum allowed spacing between line and line is 3.0 mils
- 2. Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from power, clock, or high-power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins.
- 3. Shield feedback traces of the switching regulators and keep them as short as possible (trace them on the bottom so the ground and power planes shield these traces).
- 4. Avoid coupling trace between important signal/low noise supplies (like VCOREREF, VCORE, VCOREDIG) from any switching node (i.e. SW1ALXx, SW2LX, SW3LX, SW4ALX, SW4BLX, SW5LX, and SWBSTLX).
- 5. Make sure that all components related to an specific block are referenced to the corresponding ground, e.g. all components related to the SW1 converter must referenced to GNDSW1A1 and GNDSW1A2.

8.3.3 Parallel Routing Requirements

- 1. SPI/I²C signal routing:
- CLK is the fastest signal of the system, so it must be given special care. Here are some tips for routing the communication signals:
- To avoid contamination of these delicate signals by nearby high-power or high-frequency signals, it is a good practice to shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole signal trace length.

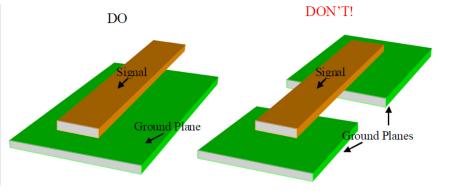


Figure 25. Recommended Shielding for Critical Signals.

• These signals can be placed on an outer layer of the board to reduce their capacitance in respect to the ground plane.

- 2. The crystal connected to the XTAL1 and XTAL2 pins must not have a ground plane directly below.
- 3. The following are clock signals: CLK, CLK32K, CLK32KMCU, XTAL1, and XTAL2. These signals must not run parallel to each other, or in the same routing layer. If it is necessary to run clock signals parallel to each other, or parallel to any other signal, then follow a MAX PARALLEL rule as follows:
 - Up to one inch parallel length 25 mil minimum separation
 - Up to two inches parallel length 50 mil minimum separation
 - Up to three inches parallel length 100 mil minimum separation
 - Up to four inches parallel length 250 mil minimum separation
 - Care must be taken with these signals not to contaminate analog signals, as they are high-frequency signals. Another good practice is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals.

8.3.4 Switching Regulator Layout Recommendations

- 1. Per design, the 34709 is designed to operate with only one input bulk capacitor. However, it is recommended to add a high-frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor should be in the range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.
- 2. Make high-current ripple traces low inductance (short, high W/L ratio).
- 3. Make high-current traces wide or copper islands.
- 4. Make high-current traces SYMETRICAL for dual-phase regulators (SW1, SW4).

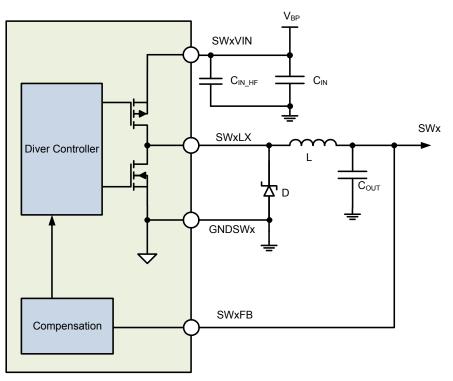


Figure 26. Generic Buck Regulator Architecture

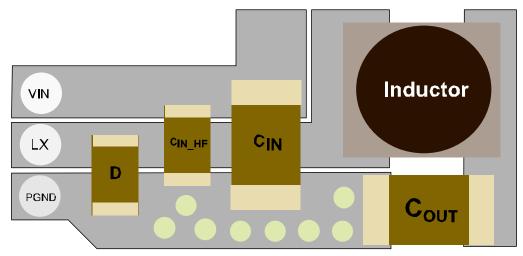
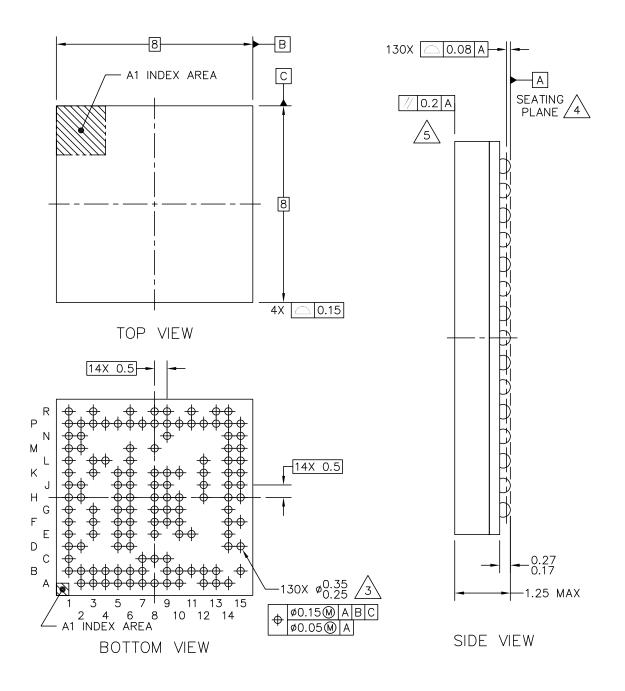


Figure 27. Recommended Layout for Switching Regulators.

9 Packaging


9.1 Packaging Mechanical Dimensions

Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.freescale.com and perform a keyword search for the drawing's document number.

Table 134. Package Drawing Information

Package	Suffix	Package Outline Drawing Number
130-pin MAPBGA (8 x 8 mm), 0.5 mm pitch	VK	98ASA00333D

Dimensions shown are provided for reference ONLY (For Layout and Design, refer to the Package Outline Drawing listed in the following figures).

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, THIN PRO	DOCUMEN	NT NO: 98ASA00333D	REV: O	
FINE PITCH, 130	<i>,</i>	CASE NU	JMBER: 2200-01	02 MAY 2011
8 X 8 PKG, 0.5 MM PI	TCH (MAP)	STANDAF	RD: JEDEC MO-275-CC	CCE-1

VK SUFFIX 130-PIN 98ASA00333D REVISION 0

Figure 28. 8 x 8 Package Mechanical Dimension

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- $\overline{3}$ MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.
 - A DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- <u>/</u>5.

ά

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, THIN PRO	DOCUMEN	NT NO: 98ASA00333D	REV: 0	
FINE PITCH, 130	CASE NU	IMBER: 2200-01	02 MAY 2011	
8 X 8 PKG, 0.5 MM PITCH (MAP)			RD: JEDEC MO-275-CC	CCE-1

VK SUFFIX 130-PIN 98ASA00333D REVISION 0

Figure 29. 8 x 8 Package Mechanical Dimension

10 Reference Section

Table 135. MC34709 Reference Documents

Reference	Description
MC34709FS	Freescale Fact Sheet
MC34709ER	Freescale Errata

11 Revision History

REVISION	DATE	DESCRIPTION OF CHANGES
1.0	8/2012	Initial release Corrected doc number to MC34709, corrected part number PC34709VK
2.0	10/2012	Deleted columns Rating and Balls from Table 3
-		Updated table 4 with Maximum Rating for all pins
		Updated BP max rating to 4.8
		Updated LICELL Max rating to 3.8V
		Added table 7. Recommended operational conditions
		Renamed Table 8 from General Electrical Characteristics to Pin Logic Threshold
		Table 9, Updated maximum current consumption on RTC/POWER cut mode to 8.0uA
		Table 9, Removed current consumption in ON mode.
		Table 13, Typical voltage of VCOREDIG in Off with good battery and RTC mode corrected to 1.2 V
		Removed PWMPS switching mode, not supported
		 Removed I_{SWxTRANSIENT} specification from all SWx regulators
		Updated Table 43, Reserved set point 27 through 31
		Updated Table 45, Reserved set point 27 through 31
		 Updated Boost output capacitor to 2 x 22uF (Figure 17, Table 133)
		 Removed Short Circuit Protection section, SCP no longer supported. Specification removed from VUSB, VUSB2, VDAC, VGEN1 and VGEN2
		Updated LDOS current limit specification, added Min and Max. (Tables 55, 56, 57, 64)
		 Corrected LDOs with external FET current limit to show base drive current limit specification (VUSB2, VDAC, VGEN2). Added Min and Max specification
		Corrected maximum pin Ratings on table 4.
		• LICELL = 4.8 V
		• VCOREREF = 1.5 V
		 VDDL, VCOREDIG = 1.6 V
		 VINPLL, VDACDRV, VUSB2DRV, VGEN2DRV = 4.8 V
		Removed section 6.3
		 Table 51: deleted typical value of I_{SWBST} and added maximum = 380 mA
		 Updated LDOS current limit specification, removed Min and Max, added Typ. (Tables 55, 56, 57, 64)
		 Corrected LDOs base drive current limit specification (VUSB2, VDAC, VGEN2). removed Min and Max value and added Typ.
		Modify External components values on Figure 24.
		Update values on figure 24 and Table 33. Bill of Material.
3.0	2/2013	Removed min and max on Output Voltage VOUT, and changed typical on Load Regulation.
		Removed note on <u>Tables 56</u>
4.0	11/2013	Updated section Oscillator Specifications
-		Added note ⁽³⁵⁾ to the VSRTC Electrical Specifications table

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

Document Number: MC34709 Rev. 4.0 11/2013

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com